期刊文献+

基于社会网络分析理论的犯罪网络侦测方案设计

Social Network Analysis in Crime Busting
下载PDF
导出
摘要 社会网络分析法(SNA)是一种可以对多种网络结构提供详细研究的分析方法。本文采用SNA及相关方法来分析犯罪网络,以确定可能的犯罪集团。首先引入社会网络分析中"合作因子"与"合作距离"这两种度量,量化并分析人员的可疑程度。之后,运用中心度分析法对个体的领导能力进行量化。在模型改进与拓展部分,基于语义网络分析与文本分析法使得分析结果更为精确。同时将所得结果与之前的结果做了比较,给出了模型优缺点分析。最后,讨论了该模型在其他领域中的运用。 Social Network Analysis(SNA)is a popular method which can provide an insight into various networks.In this paper,we use SNA and related methods to analyze crime data and try to get potential criminal gang.In our first stage of crime data analysis,we use cooperation distance metric(CD-metric)combined with the analysis on cooperation factor to identify each individual's true identity.And we then resort to Centrality Analysis,which suggests a good way in determining the focal point(s)in a network,to quantify the ability of people's leadership.In the refinement of the network model,we appeal to the theories of semantic network analysis and text analysis.Meanwhile we compare this result with the former.And we discuss the model's application in other areas such as the biomedical domain in the end of the paper.
出处 《数学建模及其应用》 2012年第2期72-82,共11页 Mathematical Modeling and Its Applications
关键词 社会网络分析 中心度 语义网络 文本分析 social network analysis centrality measures semantic web text analysis
  • 相关文献

参考文献1

二级参考文献13

  • 1Lewis D D,Knowles K A.Threading electronic mail:A preliminary study[J].Information Processing and Management, 1997 ; 33 (2) :209- 217.
  • 2S T Dumais,J Platt,D Heckerman et al.Inductive learning algorithms and representations for text categorization[C].In:Proc ACM-Conf Information and Knowledge Management (CIKM98) ,1998-11:148-155.
  • 3Salton G.Automatic information organization and retrieval[M].Addison-Wesley,Reading PA, 1968.
  • 4Salton G,Wong A,Yang C S.A vector space model for automatic indexing[J].Comm ACM,1975 ; 18 ( 11 ) :613~620.
  • 51Salton G,Buckley C.Term weighting approaches in automatic text retrieval[J].In Information Processing & Management, 1988 ; 24 (5) : 513~523.
  • 6Singhal A.AT&T at TREC-6[C].In:The Sixth Text REtrieval Conf (TREC-6) ,NIST SP 500-240,1998:215~225.
  • 7R Weber,H-.l Schek,S Blott.A Quantitative Analysis and Performance Study for Similarlty-Search Mefllods in High-Dimensional Spaces[C].In:Proceedings of the 24rd International Conference on Very Large Data Bases, 194~205.
  • 8Y Yang, An evaluation of statistical approach to text categorization[R]. In Technical Report CMU-CS-97-127 ,Computer Science Department,Carnegie Mellon University,1997.
  • 9S Arya,D Mount,N Netanyahu et al.An optimal algorithm far approximate nearest neighbor searching fixed dimensions[J].Journal of the ACM, 1998 ;45(6) :891~923.
  • 10Craven M,Dipasquo A,Freitag A et al.Learning to extract symbolic knowledge from the World Wide Web[C].In:Proc of the Fifteenth National Conf.on Artificial Intelligence (AAAI-98),Wisconsin,1998: 509~516.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部