期刊文献+

带有二次约束的二次规划问题的一个收缩分枝定界算法

A reduced branch and bound approach for solving quadratic programming problem with quadratic constraints
下载PDF
导出
摘要 通过解线性规划问题,寻找包含原问题可行域的超矩形,利用剖分技术对这个超矩形进行分枝和收缩以减少算法的迭代次数,从而用线性规划松弛方法来确定原问题在每个小超矩形上的最优值的下界,提出一种新的带有二次约束的二次规划问题的收缩分枝定界算法,并证明了该算法是收敛的. In solving linear programs, the rectangular with feasible field of the former problem is about to be found out. The number of the iteration in the algorithm is decreased by the use of partition technique on the rectangular so the lower bound of the optimal value of the former problem is determined by linear programming relaxation method. Also a reduced branch and bound algorithm for solving quadratic programming problem with quadratic constraints is put forward by the branch and bound technique, and its convergence is proved.
出处 《宁夏大学学报(自然科学版)》 CAS 2003年第1期16-18,共3页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(19971065)
关键词 二次规划 二次约束 收缩分枝定界算法 线性规划 超矩形 松弛方法 最优值 global optimization branch and bound reduced technique quadratic programming quadratic constraints
  • 相关文献

参考文献6

  • 1Raber U. A simplicial branch and bound method for solving noncovex all-quadratic programs [ J ]. Journal of Global Oplimization, 1998,13:417.
  • 2Hoai L T. An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints [ J ].Math Program, 2000,87:451.
  • 3Audet C, Hansen P, Jaumard B. A branch and cut algorithm for nonconvex quadratically constrained quadratic programming[J]. Math Program, 2000,87:131.
  • 4Ye Y Y. Approximating quadratic programming with bound and quadratic constraints [J]. Math Program, 1999, 84:219.
  • 5Mecomick G P. Computability of global solutions to factorable nonconvex programs: Part 1--convex under estimating problem[J]. Math program, 1976,10:147.
  • 6Al-khayyal F A, Falk J E. Jointly constrained biconvex programming[J]. Math of Oper Res, 1983,8:273.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部