摘要
设f和g是两个超越整函数,且T(r,f)=O ((logr)νe(logr)α),T(r,g)=O ((logr)β)(即存在4个正常数K1,K2和K3,K4,使有K1T(r,f)(logr)νe(logr)α K2和K2 T(r,g)(logr)β K4).其中ν>0,0<α<1,β>1和αβ<1.则对任何a≠∞,有δ(a,f(g))=δ(a,f),这个结果改进了Goldstein的结果.
Let f and g are two transcendental entire function with T(r,f)=O*((log r)νe(log r)α ))and T(r,g)=O*((log r)β)(i.e.,there exists four positive constants K1,K2 and K3,K4 such that K1T(r,f)(log r)νe(log r)α K2 and K3T(r,g)(log r)βK4). where ν>0,0<α<1,β>1 and αβ<1. Then δ(a,f(g))=δ(a,f). for any value of a≠∞.Those result improves the result of Goldstein.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第4期609-613,共5页
Journal of Sichuan University(Natural Science Edition)
基金
TheNaturalScienceFoundationoftheEducationDepartmentofJiangsuprovince(0 2KJD110 0 0 5 ) .
关键词
超越整函数
复合
亏量
transcendental entire function
composite
deficiencies