摘要
利用作者提出的“变基底近似”和“泰勒一阶非线性展开”等手段构造了一种基于两点自适应近似函数 ,旨在改善近似函数的精度和扩大近似范围。数值算例表明 :针对变量具有可分离形式和变量耦合程度较弱的函数 ,它具有很好的近似效果。同时 。
By utilizing the concept of 'variable base approximation' and 'Taylor first order nonlinear expansion', the authors propose a new kind of two-point based adaptive approximate function so as to improve the accuracy and to expand the approximate range. Numerical examples show that the approximation is effective for functions whose variables are either decoupled or with less coupling. Meanwhile, the last example points out a fact that it is worthy to study how to construct the approximate function that can solve the problem with strongly coupling variables.
出处
《机械科学与技术》
CSCD
北大核心
2003年第5期738-742,共5页
Mechanical Science and Technology for Aerospace Engineering
基金
中国博士后基金 (2 0 0 2 0 3 2 2 2 2 )
西北工业大学研究生创业种子基金 (2 0 0 3 0 0 5 7)
国家自然科学基金(10 172 0 72 )
关键词
两点近似函数
自适应近似
变基底近似
图形可视化
Two-point approximate function
Adaptive approximation
Variable base approximation
Graph visualization