期刊文献+

基于广义粗糙集与神经网络集成的旋转机械故障诊断研究 被引量:6

Fault Diagnosis of Rotating Machinery Based on Integration of Generalized Rough Sets and Neural Networks
下载PDF
导出
摘要 故障诊断规则中判断条件的冗余、不完全和不确定性不利于实际应用。采用广义粗糙集理论对旋转机械振动故障诊断的非完备决策系统进行了约简 ,得到了更为简明的最优诊断规则 ;根据约简结果 ,建立了基于神经网络的故障诊断系统 ;网络的训练对比结果表明 ,基于粗糙集理论的约简处理简化了神经网络结构 ,提高了网络的训练效率 ; In engineering applications, the incompleteness and redundancy in rules of fault diagnosis often lead to inconvenience. In this paper, rough sets theory was applied to reduction of incomplete diagnosis decision system of rotating machinery to find necessary conditions for diagnosis, and neural networks were used for fault pattern classification. Generalized rough sets theory and its application to reduction of incomplete decision system were introduced. Based on this theory, the incomplete fault diagnosis decision systems of rotating machinery were studied, and the optimal diagnosis rules were obtained. The application of the reduced diagnosis decision system to the neural fault classifier indicated that rough-sets-based-reduction reduces the dimension of input to neural network, and raises the efficiency of training. The practical examples validated the application of generalized rough sets integrated with neural networks to vibration fault diagnosis of rotating machinery.
出处 《机械科学与技术》 CSCD 北大核心 2003年第5期815-820,共6页 Mechanical Science and Technology for Aerospace Engineering
关键词 粗糙集 神经网络 故障诊断 旋转机械 Rough sets Neural networks Fault diagnosis Rotating machinery
  • 相关文献

参考文献14

  • 1李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 2胡可云,陆玉昌,石纯一.粗糙集理论及其应用进展[J].清华大学学报(自然科学版),2001,41(1):64-68. 被引量:120
  • 3Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences,1982,11(5) : 341-356.
  • 4Zdzislaw Pawlak, Jeray Grzymala-Busse, Roman slowinski,Wojciech Ziarko. Rough sets [J]. Communications of the ACM, 1995, 38(11):89-95.
  • 5Pawlak Z. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems: An International Journal, 1998,29:661-688.
  • 6Pawlak Z. Rough classification [J]. International Journal of Human-Computer Studies, 1999,51 ; 369- 383.
  • 7Nowwicki R, Slowinski R, Stefanowski J. Rough sets analysis of diagnosis capacity of vibroacoustic symptoms [J].Computers and Mathematics with Applications, 1992, 24(7):109-123.
  • 8Nowwicki R, Slowinski R, Stefanowski J. Evaluation of diagnostic symptoms by means of the rough sets theory [J].Computers in Industry, 1992,20:141-152.
  • 9Shen L X, Tay Francis F H, Qu L S, Shen Y D. Fault diagnosis using rough sets theory [J]. Computers in Industry,2000,43(1) :61-72.
  • 10Roman W. Swiniarski L H. Rough sets as a front end of neural-networks texture classifiers [J]. Neurocomputing,2001,36:85-102.

二级参考文献6

  • 1Chan C C,Inform Sci,1998年,107卷,169页
  • 2Lin T Y,Proc IMACS Multiconference,1996年,942页
  • 3Yao Y Y,Intelligent Automation and Soft Computing,1996年,2卷,2期,103页
  • 4Hu X,学位论文,1995年
  • 5Shan N,Computational Intelligence,1995年,11卷,357页
  • 6Lin T Y,Methodologies for Intelligent Systems,1994年,65页

共引文献222

同被引文献52

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部