期刊文献+

具有共轭点的类光测地线的变分 被引量:2

VARIATION OF A NULL GEODESIC WITH CONJUGATE POINTS ON IT
下载PDF
导出
摘要 在广义相对论中有一条重要的定理 :如果一条类光测地线γ0 (λ)在 (p ,q)间存在一点r沿γ0 (λ)共轭于 p ,那么γ0 (λ)的变分将给出连接 p ,q的类时曲线 .证明了这样得到的类时曲线趋于类光测地线时 ,它的固有加速度趋于无穷大 . In general relativity, there is an important theorem that gives a null geodesic γ_0(λ ) with a point r in ( p,q ) conjugate to p along γ_0(λ ) , there will be a variation of γ_0(λ ) which will give a time-like curve from p to q . It is proved that the time-like curves coming from the above-mentioned variation have a proper acceleration approaching infinity as the time-like curve approaches the null geodesic.
作者 田贵花 赵峥
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期494-498,共5页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目 (10 0 730 0 2 )
关键词 类光测地线 共轭点 变分 类时曲线 null geodesic conjugate points variation
  • 相关文献

参考文献4

  • 1Hawking S W, Ellis G F R. The large scale structure of spacetime[M]. Cambridge: Cambridge University Press, 1973.
  • 2Wald R M. General relativity[M]. Chicago: The University of Chicago Press, 1984.
  • 3Tian Guihua, Zhao Zheng, Liang Canbin. "proper acceleration" of a null geodesic in curved spacetime [J]. Class Quantum Gray, 2002,19:277.
  • 4Rindler W. Essential Relativity[M]. New York:Springer-Verlag, 1977.

同被引文献12

  • 1霍金 彭若斯.时空本性[M].长沙:湖南科学技术出版社,1996.1-33.
  • 2赵峥.黑渝芍弯曲的时空[M].太原:山西科学技术出版社,2001.264-305.
  • 3霍金SW 彭若斯R.时空本性[M].长沙:湖南科学技术出版社,1996..
  • 4粱灿彬.微分几何入门与广义相对论[M].北京:北京师范大学出版社,2000..
  • 5Hawking S W,Ellis G F R.The large scale structure of space-time[M].Cambridge:Cambridge University Press,1973:256—298.
  • 6Wald R W.General relativity[M].Chicago and London:University of Chicago Press,1984:211—242.
  • 7Rindler W. Essential relativity[M]. New York:Springer-Verlag, 1977:48-51.
  • 8Tian Guihua,Zhao Zheng,Liang Canbin. Proper acceleration of a null geodesic in curved space-time[J].Class Quantum Gray, 9.002,19: 2777.
  • 9Unruh W G. Notes on black hole evaporation[J]. Phys Rev,1976,D14:870.
  • 10HAWKING S W,ELLIS G F R.The Large Scale Structure of Space-Time[M]. Cambridge:Cambrige University Press,1973.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部