期刊文献+

分子motor定向输运的反常扩散机制 被引量:1

ANOMALOUS DIFFUSIVE MECHANISM OF DIRECTED TRANSPORT OF MOLECULAR MOTOR
下载PDF
导出
摘要 研究了分子motor在非对称闪烁周期势中的反常扩散引起的输运过程 .通过解析和数值方法求解广义Langevin方程 ,得到了粒子稳定定向流 ,研究了其随反常扩散指数δ和无势停留时间τoff的变化规律 . The transport process of a molecular motor in a flashing asymmetrical periodic potential is studied in the presence of anomalous diffusion. The stationary current of the particle is obtained by analytically and numerically solving the generalized Langevin equation. The behavior of the current as a function of anomalous parameter δ and waiting time τ_ off in the potential off is analysed.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期476-479,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金重点资助项目 (10 2 35 0 2 0 ) 国家自然科学基金委员会数理学部优秀结题鼓励基金资助项目 教育部跨世纪优秀人才基金资助项目
关键词 分子motor定向运动 非正常扩散 闪烁棘轮 非对称闪烁周期势 输运过程 molecular motor anomalous diffusion flashing ratchet
  • 相关文献

参考文献11

  • 1Astumian R D. Thermodynamics and kinetics of a Brownian[J]. Science, 1997,276:917.
  • 2Reimarm P. Brownian motors noisy transport far from equilibrium[J]. Phys Rep, 2002, 361:57.
  • 3Astumian R D, Bier M. Fluctuation driver ratchets: molecular motors[J]. Phys Rev Lett, 1994, 72:1766.
  • 4Astumian R D, Bier M. Mechanochemical coupling of motion of molecular motor to ATP hydrolysis[J].Biophys Journal, 1996, 70:637.
  • 5Faucheux L P, Bourdieu L S, Kaplan P D, et al. Optical thermal ratchet[J]. Phys Rev Lett, 1994, 74:1504.
  • 6Morgado R, Oliveira F A. Relation between anomalous and normal diffusion in systems with memory[J]. Phys Rev Lett, 2002, 89:100601.
  • 7Hu Gang, Daffertshofer A, Haken H. Diffusion of periodically forced Brownian particles moving in space-periodic potentials[J]. Phys Rev Lett, 1996, 76:4874.
  • 8Lutz E. Fractional Langevin equation[J]. Phys Rev, 2001, E64:051106.
  • 9Metzler R, Klafter J. The random walk's guide to anoumalous diffusion: a fractional dynamics approach[J]. Phys Rep, 2000, 339:1.
  • 10Porà J M, Wang K G, Masoliver J. Generalized Langevin equations: anomalous diffusion and probability distributions[J]. Phys Rev, 1996, E53 : 5872.

同被引文献12

  • 1包景东.分数布朗运动和反常扩散[J].物理学进展,2005,25(4):359-367. 被引量:17
  • 2Ralf Metzler,Joseph Klafter.The random walk's guide to anomalous diffusion:A fractional dynamics approach[J].Phys Rep,2000,339:1-77.
  • 3Ralf Metzler,Joseph Klafter.The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics[J].J Phys A,2004,37:R161-R208.
  • 4Bao J D,Zhou Y Z.Ballistic diffusion induced by a thermal broadband noise[J].Phys Rev Lett,2003,91:138104.
  • 5John Stachel.爱因斯坦全集(第二卷)[M].范岱年,译.湖南科技出版社,2002:181-206.
  • 6Skolov I M,Klafter J.From diffusion to anomalus diffusion:Acentury after Einstein's Brownian motion[J].Chaos,2005,15:026103.
  • 7Montroll E W,Weiss G H.Random walks on lattices.Ⅱ[J].J Math Phys,1965,6:167.
  • 8Goychuk Ⅰ,Heinsalu E,Patriarca M,Schmid G,Hanggi P.Current and universal scaling in anomalous transport[J].Phys Rev E,2006,73:020101(R).
  • 9Heinsalu E,Patriarca M,Goychuk Ⅰ,Schmid G,Hanggi G.Fractional Fokker-Planck dynamics:numerical algorithm and simulations[J].Phy Rev Em 2006,73:046133.
  • 10Chechkin A V,Gonchar V Yu.A model for persistent Levy motion[J].Physica A,2000,277:312-326.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部