期刊文献+

次线性半正多点边值问题的正解(英文) 被引量:3

Positive solutions of sublinear semipositone multi-point boundary value problem
下载PDF
导出
摘要 利用锥上的不动点定理证明了多点边值问题 ( 1 ) In this paper,the existence of positive solutions to the multi point boundary value problem is studied by using the fixed point theorem in cones.
作者 马巧珍
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期5-7,共3页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by National Natural Science Foundation of China( 1 0 2 71 0 95 )
关键词 边值问题 正解 次线性 boundary value problem positive solution sublinearity
  • 相关文献

参考文献4

  • 1Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order differential equation[J]. J Math Anal Appl, 1992,168 : 540-551.
  • 2Ma R.Multiplicity of positive solutions for secondorder three-point boundary value problems[J]. Comp Math Appl,2000,40:193-204.
  • 3Feng W,Webb J R L. Solvability of three-point nonlinear boundary value problem at resonance[J].Nonlinear Analysis TMA, 1997,30(6) :467-480.
  • 4Guo D, Lakshmikantham V. Nonlinear Problems in Attract Cones[M]. San Diego :Academic Press, 1988.

同被引文献16

  • 1RuYunMA QiaoZhenMA.Positive Solutions for Semipositone m-point Boundary-value Problems[J].Acta Mathematica Sinica,English Series,2004,20(2):273-282. 被引量:8
  • 2李翠哲,游丽霞.非线性奇异三点边值问题正解的存在性[J].北京理工大学学报,2004,24(12):1107-1110. 被引量:1
  • 3TIMOSHENKO S.Theory of elastic stability[M].New York:McGraw-Hill,1961.
  • 4GUPTA C P.Solvability of three-point nonlinear boundary value problem for a second order ordinary differential equation[J].J Math Anal Appl,1992,168(2):540-551.
  • 5FENG W,WEBB J R L.Solvability of a three-point nonlinear boundary value problem at resonance[J].Nonlinear Analysis,1997,30(6):3 227-3 238.
  • 6MA R Y.Multiplicity of positive solutions for second-order three-point boundary value problem[J].Comp Math Appl,2000,40(1):193-204.
  • 7郭大钧.非线性泛涵分析[M].(第2版).济南:山东科技出版社,2001.
  • 8CHENG X, ZHONG C. Existence of positive solutions for a second-order ordinary differential system[J]. J Math Anal Appl, 2005, 312(1): 14-23.
  • 9DE FIGUEIREDO D G. Semilinear elliptic systems[C]//AMBROSETTI A, CHANG K C, EKELAND I. Proc of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations. Singapore: World Scientific Publishing Company, 1998: 122-152.
  • 10ALVES C O, DE FIGUEIREDO D G. Nonvariational elliptic systems[J]. Discrete and Continuous Dynamical Systems, 2002, 8(2): 289-302.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部