摘要
系统地研究了来自于射影几何中平面曲线运动的1+1维非线性方程的对称代数。发现此方程有一个七维对称群并且其对称代数的一维最优子代数有21个元素,通过寻找在群的伴随作用下的代数不变量,证明了该最优系统的最优性。
The symmetry algebras of 1+1 dimensional nonlinear evolution equation arising from the motion of plane curve in affine geometry are systematically studied.It is found that the equation admits a sevendimensional symmetry group H1 and there are twentyone elements in the oneparameter optimal system of the symmetry algebras.The optimality of oneparameter optimal system θ1 is established by finding some algebraic invariants under the ajoint actions of the group H1.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第4期383-388,共6页
Journal of Northwest University(Natural Science Edition)
基金
supported under Natural Science Foundation grant of Shannxi(KC972 0 4)
关键词
对称李群
最优系统
伴随表示
非线性发展方程
Lie group of symmetry
optimal system
adjoint representation
nonlinear evolution equation