摘要
本文对一类确定性离散事件动态系统(DEDS)的稳定性(Stability)及周期行为(Periodic bchavior)进行深入研究,着重讨论稳定系统的周期行为特征,并对其加以分类。研究结果表明,如果系统是稳定的,其状态空间S^n可以分解成若干具有本质周期特征的可稳区域(Stabilizable regions){D_r(s)},其中D_o(s)为可稳类(?)D_r(s)的稳态平衡域(Stable equilibrium region),(?)D_o(s)构成系统的稳态平衡域R(A^k0),D_o(1)为系统的特征空间。本文给出了系统状态空间分解与可稳域D_r(s)的确定方法。
In this paper,stability and periodic behavior of a class of deterministic discrete event dynamic system (DEDS) are further studied.It has been proved that if the system is stable,the state space Sn can be decomposed into a certain number of stabilizable regions (Dr(s)} in which Dr(s) has essential period characteristics,D0(s) is the stable equilibrium region of the stabilizable class ∪tDr(s) and D0(1) is the eigenspace of the system.A method for decomposing the state space and determining the stabilizable regions {Dr(s)} is given.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1992年第2期135-140,共6页
Control Theory & Applications
基金
863高技术CIMS项目资助课题
关键词
断续系统
动态系统
稳定性
discrete event dynamic system
stability
period characteristic
stabilizable region
stable equilibrium region
space decomposition