期刊文献+

新型梯度倒数加权滤波器及其性质 被引量:2

New Gradient Inverse Weighting Filter and Its Properties
下载PDF
导出
摘要 该文从经典梯度倒数加权滤波器出发 ,通过重新定义合适的模板结构和参数提升梯度模 ,提出了一种应用于信号去噪和图像增强的新型梯度倒数加权滤波器。分析该滤波器的迭代过程 ,揭示了该数字滤波器解决了整体变分的全局最优解问题。该文既以实验说明了该滤波器优良的去噪和边缘保持能力 。 Based on the classical gradient inverse weightin g filter, a new gradient inverse weighting filter for signal denoising a nd image en hancement is proposed. In the filter, the filter stencil and the parameter lifti ng gradient modulus is defined. In iterations process, it solves a global total variational optimiza tion problem. The feasibility of the filter in de noising and edge prese rving is demonstrated with experiments, and some results in theory between the filter and total variation model are proved in mathematically.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2003年第4期390-394,共5页 Journal of Nanjing University of Science and Technology
基金 高等学校博士学科点专项科研基金项目 ( 2 0 0 2 0 2 880 2 4)
关键词 加权滤波器 整体变分模型 邻域系统 数字滤波器 weighting filter, total variation model, neighborho od system, digital filter
  • 相关文献

参考文献5

  • 1Rudin L, Osher S, E Fatemi. Nonlinear total variation based noise removel algorithms[ J ]. Physica D,1992, 60:259 ~ 268.
  • 2Wang D, Vagnucci A. Gradient inverse weighting smoothing schema and the evaluation of its performance[ J ]. Computer Graphics and Image Processing, 1981, 15:1054 ~ 1065.
  • 3Cobson D, Vogel C. Convergence of an iterative method for total variation denoising[ J]. SIAM Journal of Numerical Analysis, 1997, 34(5):1779-1791.
  • 4Chambolle A,Lions P L. Image recovery via total variational minimization and related problem[J]. Numerical Mathmatica, 1997,76:167 ~ 188.
  • 5Chan T F. The dgital TV filter and nonlinear denoising[J]. IEEE Transaction on Image Processing,2001, 10(2) :231 ~ 241.

同被引文献14

  • 1肖亮,吴慧中,韦志辉.面向彩色图像恢复与边缘检测的Mumford-Shah推广模型研究[J].计算机学报,2006,29(2):286-295. 被引量:9
  • 2GonzalezRC WoodsRE著 阮秋琦 阮宇智译.数字图像处理(第二版)[M].北京:电子工业出版社,2003.507-514.
  • 3许森,陈伟建.一种去除图像中脉冲噪声的自适应滤波算法[J].成都信息工程学院学报,2007,22(4):423-426. 被引量:3
  • 4Cobson D,Vogel C.Convergence of an iterative method for total variation denoising[J].SIAM Journal of Numerical Analysis,1997,34 (5):1 779-1 791.
  • 5Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removel algorithms[J].Physica D,1992,60:259-268.
  • 6Huber P.Robust statistics[M].New York:Wiley,1981.
  • 7Geman S,Geman D.Stochastic relaxation,Gibbs distributions and the Bayes in restoration of images[J].IEEE Trans PAM Ⅰ,1984,6 (6):721 -741.
  • 8Hamza B A,Hamid K,Gozde B U.Unifying probabilistic and variational estimation[J].IEEE Signal Processing Magazine,2002,19 (9):37-47.
  • 9张恭庆.泛函分析[M].北京:北京大学出版社,2001.
  • 10Marquina A,Osher S.A new time dependent model based on level set motion for nonlinear deblurring and noise removal[J].Lecture Notes in Computer Science,1999,1 682:429-434.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部