摘要
The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities
The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities
基金
This work was supported by South-West Jiaotong University Foundation