期刊文献+

稀土离子对钙调蛋白与单克隆抗体分子识别的影响

Influence of Rare Earth Irons on the Molecular Recognition Between Calmodulin and Monoclonal Antibody
下载PDF
导出
摘要 分别采用酶联免疫吸附 (ELISA)法和荧光标记技术比较了 Ca2 +,La3 +,Eu3 +和 Yb3 +离子对钙调蛋白与单克隆抗体 2 C3之间分子识别的影响 .结果表明 ,金属离子与钙调蛋白作用后会诱导其发生不同的构象变化 ,并进一步影响到钙调蛋白与单克隆抗体 2 C3分子之间的结合强度 .当钙调蛋白分别与 La3 +,Eu3 +,Yb3 +作用后 ,它与单抗 2 C3分子之间的解离常数为 (2 6 .8± 2 .5 ) ,(2 1 .8± 3.4 )和 (6 4 .8± 5 .1 ) nmol/ L,而结合 Ca2 +前后的钙调蛋白与单抗分子的解离常数分别为 (1 77.2± 2 .8)和 (1 5 7± 4 .2 ) nmol/ L.这一结果表明 ,稀土离子诱导钙调蛋白发生的构象变化明显不同于钙离子的作用 ,这种差异可能是稀土与钙离子对钙调蛋白调控作用表现出差别的原因 . The molecular recognitions between monoclonal antibody 2C3 and calmodulin saturated with different metal ions(La 3+, Eu 3+, Yb 3+ and Ca 2+) were investigated by the enzyme linked immunosorbent assay(ELISA) and labeled fluorescence spectroscopy. The results indicate that after binding with different metal ions, the calmodulin undergoes different conformational changes, which have a significant effect on its recognition ability to a metal ion induced conformation-specific monoclonal antibody. The dissociation constants between the antibody and the calmodulin saturated with La 3+, Eu 3+, Yb 3+ are (26.8±2.5), (21.8±3.4) and (64.8±5.1) nmol/L, respectively, while the dissociation constants between the antibody and Ca 2+-CaM or apoCaM are (157±4.2) and (177.2±2.8) nmol/L, respectively. This result indicates lanthanide-induced conformational changes of calmodulin are not similar with that induced by calcium, which maybe account for the facts that lanthanide and calcium ions lead to different effects on the regulating function of calmodulin in biological systems.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2003年第8期1346-1350,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金重大项目 (批准号 :2 9890 2 80 )资助
关键词 稀土离子 钙调蛋白 单克隆抗体 分子识别 分子量 抗原 酶联免疫吸附 荧光滴定法 Rare earth ion Calmodulin protein Monoclonal antibody Molecular recognition
  • 相关文献

参考文献3

二级参考文献22

  • 1[1]LI Xin-Min(李新民),Ni Jia-Zuan(倪嘉缵),WANG Ping-Yuan(王平原)et al Shengwu Huaxue Zazhi( ChineseBiochemical Journal), 1995, 11(3), 281.
  • 2[2]Hans J. V., Zhang M.J. Mol. Cellular Biochem., 1995, 149 ~ 150, 3.
  • 3[3]LI Xiao-Dong(李晓东),ZHANG Ting-Fang(张庭芳)Shengwu Huaxue Zazhi ( Chinese Biochemical Journal),1993,9(3),381.
  • 4[4]DU Guo-Zhong(杜国忠),ZHAO Bao-Cang(赵宝昌)Shengwu Huaxue Zazhi ( Chinese Biochemical Journal ),1997, 13(1), 122.
  • 5[5]Gopalakrishna R., Anderson W.B. Biochem. Biophys. Res. Commun., 1982, 104(2), 830.
  • 6[6]Lowry O., Rosebroug N. J., Farr A. L. et al J. Biol. Chem., 1951, 193(1 ), 265.
  • 7[7]Stellmach B.,Translated by QIAN Jia-Yuan(钱嘉渊)Methods for Measurement of Enzyme (酶的测定方法),Beijing: China Light Industry Press, 1992, p204.
  • 8[8]Ochiai EI-I.,Translated by LUO Jin-Xin(罗锦新),ZHANG Nai-Zheng(张乃正),CHEN Han-Wen(陈汉文)Bioinorganic Chemistry an Introduction (生物无机化学导论),Beijing:Chemical Industry Press,1987,p366.
  • 9[9]WANG Xun-Qing(汪勋清),GAO Xiao-Xia(高小霞)Beijing Daxue Xuebao Ziran Kexue Ban ( Acta Scientiarum Naturalium Universitatis Pekinesis ) , 1997, 33(2), 147.
  • 10[10]XU Guo-Gang(徐国刚)Weisheng Dulixue Zazhi( Journal Health Toxicology), 1994, 8( 1 ), 45.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部