期刊文献+

全连续映射的双投影逼近及其应用

Double Projection Approximation of Completely Continuous Mappings and Its Application
下载PDF
导出
摘要 本文证明了Hilbert空间X上的连续映射G∶X→X为全连续的充要条件是G有双投影逼近性质,即任给X的有界子集D与ε>0,存在X的有限维子空间E,使得‖PG(Px)—G(x)‖≤ε,(vx∈D),其中P∶X→E为正交投影.还给出了这一结果到全连续梯度向量场的Morse指标上的应用. Let X be a Hilbert space.We say that a mapping G:X→X has the double projection approximation property if for every bounded subset Dof X and every ε>0 there exists a finite-dimensional subspace E of Xsuch that‖PG(P_x)-G_(x)‖≤ε,A_x∈Dwhere P:X→E is the orthogonal projection.We prove that a continuousmapping G:X→X is completely continuous if and only if G has the doubleprojection approximation property.We give an application of this resultto the Morse index for the completely continuous gradient vector fields.
作者 范先令
机构地区 兰州大学数学系
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1992年第1期15-20,共6页 Journal of Lanzhou University(Natural Sciences)
关键词 全连续映射 双投影逼近 弱拓扑 completely continuous mapping double projection approximation weak topology gradient vector field Morse index
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部