摘要
运用关于缓增分布的Hermite表示理论结合辛变换技巧,讨论了Hn上一类二阶左不变偏微分算子的局部可解性问题,指出对这类算子来说,其局部可解性存在离散现象.
By using the Hermite expansion theory for tempered distributions and symplectic transformation method,we have studied the local solvabilityof a class of second order left invariant partial differential operators onthe group Hn,and pointed out that discrete phenomena may occur forthe local solvability of this class of operators.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1992年第1期1-6,共6页
Journal of Lanzhou University(Natural Sciences)
基金
国家青年科学基金
关键词
偏微分算子
局部可解性
辛变换
Heisenberg group
local solvability
symplectic trannsformation