期刊文献+

Entangled State Representation for Hamiltonian Operator of Quantum Pendulum

下载PDF
导出
摘要 By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two panicles' relative coordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantum point-mass pendulum. The Hamiltonian displays the correct Schroedlnger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation are derived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
作者 FANHong-Yi
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第2X期157-160,共4页 理论物理通讯(英文版)
  • 相关文献

参考文献15

  • 1E.U. Condon, Phys. Rev. 31 (1928) 891.
  • 2G.P. Cook and Clyde S. Zaidins, Am. J. Phys. 54 (1986)259.
  • 3G.L. Baker, J.A. Blackburn, and H.J.T. Smith, Am. J.Phys. 70 (2002) 525.
  • 4N.W. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, Oxford(1947).
  • 5A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47(1935) 777.
  • 6Fan Hong-Yi and J.R. Klauder, Phys. Rev. A49 (1994)704; Hong-Yi Fan and Yue Fan, Phys. Rev. A54 (1996)958.
  • 7Hong-Yi Fan, Phys. Rev. A65 (2002) 064102.
  • 8Fan Hong-Yi, H.R. Zaidi, and J.R. Klauder, Phys. Rev.D35(1987) 1831; Hong-yi Fan, Hui Zou, and Yue Fan,Phys. Lett. A254 (1999) 137.
  • 9A. Wünsche, J. Opt. B: Quantum Semiclass. Opt. 1(1999) R11.
  • 10W.Noh,A.Fougeres,and L.mandel,Phys.Rev.Lett.67(1991)1426;Phys.Rev.A45(1992)424;Phys.Rev.A46(1992)2840;Phys.Rev.A47(1993)4535;Phys.Rev.A47(1993)4541;Phys.Rev.A48(1993)1719;Phys.Rev.Lett.71(1993)2579.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部