期刊文献+

脉冲周期边值问题拟线性化方法 被引量:2

QUASILINEARIZATION METHOD FOR IMPULSIVE PERIODIC BOUNDARY VALUE PROBLEMS
原文传递
导出
摘要 本文用拟线性化方法研究了一阶脉冲周期边值问题,获得了解的存在唯一性及解的逼近序列的一致收敛性和平方收敛性结果。 The periodic boundary value problem for first order impulsive equation is investigated by means of quasilinearization method. The existence and uniqueness of solution is obtained. The result on the uniform convergence and quadric convergence for the iterative sequence of solutions is established.
作者 柴国庆
出处 《系统科学与数学》 CSCD 北大核心 2003年第3期390-397,共8页 Journal of Systems Science and Mathematical Sciences
基金 湖北省高等学校自然科学重点项目基金(2000B08003)
关键词 脉冲微分方程 周期边值问题 拟线性化法 存在性 唯一性 逼近序列 一致收敛性 平方收敛性 Quasilinearization method, impulsive periodic boundary value problem, quadric convergence.
  • 相关文献

参考文献10

  • 1柴国庆.Banach空间中非线性脉冲微分-积分方程的极值解[J].数学物理学报(A辑),2000,20(1):74-80. 被引量:8
  • 2韦忠礼.Banach空间一阶非线性脉冲微分方程周期边值问题的解[J].系统科学与数学,1999,19(3):378-384. 被引量:17
  • 3Lakshmikantham V,Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations.World Scientific. Singpore, 1989.
  • 4Guo Dajun. Second order impulsive integro-differential equations on unbounded domains in Banach suaces. Nonlinear Analysis, 1999, 35: 413-423.
  • 5Frigon M and O'Regan D. First order impulsive initial and periodic with variable moments. J.Math. Anal. Appl., 1999, 233: 730-739.
  • 6Lakshmikantham V, Malek S. Generalized quasilineaxization. Nonlinear World., 1994, (1): 59-63.
  • 7Mohapatra R N, Vajravelu K. Generalized quasilinearization method and rapid convergence for first order initial value problems. J. Math. Anal. Appl., 1997, 207: 206-219.
  • 8Eloe P W, Zhang Yongzhi. A quaclric monotone iteration scheme for two-point boundary value problems for ordinary differential equations. Nonlinear Analysis, 1998, 33: 443-453.
  • 9Mohapatra R N, Vajravelu K, Yin Y. Generalized quasilinearization method for second-order boundary value problems. Nonlinear Analysis. 1999, 36: 799-806.
  • 10Guo Dajun, Lakshmilkantham V and Liu Xinzhi. Nonlinear Integral Equations in Abstract Space.Kluwer Academic Publishers. 1996, 255-256.

二级参考文献14

共引文献21

同被引文献4

  • 1Mohapatra R N, Vajravelu K, Yin Y. Generalized quasilinearization method for second-order boundary value problems[J]. Nonlinear Analysis, 1998, 33:443-453.
  • 2Lakshmikantham V, Malek S. Generalized quasilinearization[J]. Nonlinear World, 1994, (1): 59-63.
  • 3L Bohner M, Peterson A, Advances in Dynamic Equations on Time Scales[M]. Boston: Birkh~user, 2003.
  • 4Dingbian Qian,Xinyu Li.Periodic soultions for ordinary differential equations with sublinear impulsive effects[J].J.Math.Anal.Appl.,2005,303:288-303.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部