期刊文献+

弱闭T(N)-模的预零化子的线性等距映象群

GROUP OF LINEAR ISOMETRIES OF THE PREANNILATORS OF WEAKLY CLOSED T(N)-MODULES
原文传递
导出
摘要 本文刻画了弱闭T(N)-模的预零化子的线性等距映象群的无穷小生成元.设U为由N到N的左连续序同态N到N所确定的弱闭T(N)-模,U_⊥为U的预零化子。{Φ_t :t∈R}为U_⊥到U_⊥上的单参数强连续线性等距映象群。若(0)_*=(0),dim(0)+≠1且H_-=H,dim(HH)≥ 2,则存在有界自伴算子K_1,K_2使得{Φ_t :t∈R}的无穷小生成元为α(X)=i(K_1X-XK_2)。 This paper characterizes the infinitesimal generator of a group of linear isometrics on the preannilators of weakly closed T(N)-modules. Let U be the weakly closed T(N)-module determined by the left continuous order homomorphism be a strongly continuous one parameter group of isometrics on U⊥ , where U⊥ is the preannihila-tors of U on a Hilbert space H. We prove that if (0)* = (0), dim(0)≥ 1 and H_ = H, dim(H H) ≠ 2, then the infinitesimal generator of , where K1 and K2 are bounded self-adjiont operators.
出处 《系统科学与数学》 CSCD 北大核心 2003年第3期426-432,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(70271039)
关键词 “弱闭T(N)-模” 预零化子 线性等距映象群 生成元 强连续酉群 HILBERT空间 算子 Weakly closed T(N)-modules, preannihilator, linear isometrics, infinitesmal generator.
  • 相关文献

参考文献8

  • 1董浙,鲁世杰.弱闭T(N)-模的预零化子[J].浙江大学学报(理学版),2000,27(3):263-269. 被引量:1
  • 2Erdos J A and Power S C. Weakly closed ideals of nest algebras. J. Operator Theory,1982,7:219-235.
  • 3Kadison R V. Isometries of operator algebras. Ann. of Math., 1951, 54: 325-338.
  • 4Arazy J and Solel B. Isometries of non-adjoint operators algebras.J.Funct. Anal, 1990, 90:284-305
  • 5Moore R L and Trent T T. Isometries of nest algebras. J. Funct. Anal., 1989, 86: 180-209.
  • 6Davidson K R. Nest Algebras.Pitman Research Notes in Mathematics Series 191, Longman Scientific and Technical Burnt Mill Harlow, Essex, UK, 1988.
  • 7Berkson E, Fleming R J and Jamison 3. Groups of isometries on certain ideals of Hilbert space operators. Math. Ann., 1976, 220: 151-156.
  • 8Yeadon E J. Isometries of non-commutative L^p-space. Math. Proc. Combridge Philos Soc., 1981,90: 41-50.

二级参考文献7

  • 1Erdos J A,Power S C.Weakly closed ideals of nest algebras[].Journal of Operator Theory.1982
  • 2Larson D R.Annihilators of operator algebras[].Topic in Modern Operator Theory.1982
  • 3Kraus J,Larson D R.Some applications of a technique for constructing reflexive operator algebras[].Journal of Operator Theory.1985
  • 4Power S C.The distance to the upper triangular operator[].Mathematical Proceedings of the Cambridge Philosophical Society.1980
  • 5Lance E C.Cohomology and perturbations of nest algebras[].Proceedings of the London Mathematical Society.1981
  • 6Davidson K R.Nest Algebras, Pitman research notes in mathematics series 191[]..1988
  • 7Kraus J,Larson D R.Reflexivity and distance formulae[].Proceedings of the London Mathematical Society.1986

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部