期刊文献+

遗传归纳逻辑程序设计的个体编码生长现象 被引量:3

Growth Phenomenon of Individuals' Code Length in Genetic Inductive Logic Programming
下载PDF
导出
摘要 遗传归纳逻辑程序设计 (GILP)的个体编码生长现象严重影响了算法的性能和规则的可读性 通过对变长编码的模式分析 ,解释了GILP的个体编码生长现象 并发现 ,若从初始种群开始添加长度惩罚项来解决个体编码生长问题 ,种群会出现退化现象 而采取在演化的初期不添加惩罚项 ,在种群的性状有了明显改善后再添加惩罚的策略 ,既可避免种群退化 ,又可有效解决个体编码生长问题 . The individuals' code growth existing in GILP badly reduces the algorithm performance and the readability of rules. Through the schema analysis of individuals with variable length, the individuals' code growth existing in GILP is explained. In addition, the population will degenerate when the length penalty of individual's fitness is added from the initial population. If the new penalty strategy is employed and the length penalty of individual's fitness is not added until the population properties are obviously improved, then the population's degeneration is avoided and the individual's code growth is also effectively restrained.
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第8期1238-1243,共6页 Journal of Computer Research and Development
基金 国家自然科学基金 ( 60 173 0 14 ) 北京市自然科学基金 ( 4 0 2 2 0 0 3 )
关键词 归纳逻辑程序设计 遗传归纳逻辑程序设计 遗传算法 模式分析 inductive logic programming GILP genetic algorithm schema analysis
  • 相关文献

参考文献9

  • 1杨新武,刘椿年.遗传归纳逻辑程序设计中规则的位串表示法[J].北京工业大学学报,2001,27(3):297-302. 被引量:10
  • 2潘正君.康立山 陈毓屏.演化计算[M].北京:清华大学出版社,南宁:广西科学技术出版社,1998..
  • 3H Blockeel, L De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 1998, 101 (1-2) : 285 - 297.
  • 4L Dehaspe, L De Raedt. Mining association rules in multiple relations. In: S Dzeroski, N Lavrac eds. Proc of the 7th Int'l Workshop on Inductive Logic Programming. Berlin: Springer,1997. 125--132.
  • 5L De Raedt, W Van Laer. Inductive constraint logic. In: Klaus P Jantke, Takeshi Shinohara, Thomas Zeugmann eds. Proc of the 6th Int'l Workshop on Algorithm Learning Theory. Berlin:Springer, 1995. 80-94.
  • 6Po Shun Ngan, Man Leung Wong, Kwong Sak Leung et al.Using grammar based genetic programming for data mining of medical knowledge. In: John Koza eds. Proc of the 3rd Annual Genetic Programming Conf. San Francisco, CA: Morgan Kaufmann, 1998. 254--259.
  • 7Around Tveit. Genetic inductive logic programming [Master dissertation] . Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway,1997.
  • 8J R Quinlan. Learning logical definitions from relations. Machine Learning, 1990, 5(3): 239-266.
  • 9J R Quinlan. Learning first-order definitions of functions.Artificial Intelligence Research, 1996, 5:139-161.

二级参考文献1

共引文献9

同被引文献22

  • 1L De Raedt, K Kersfing. Probabilisfic logic learning[ A]. ACMSIGKDD Explorations: Special issue on Multi-Relational Data Mining [ C].New York: ACM Press, 2003.31 - 48.
  • 2M Richardson, P Domingos. Markov logic networks [ J ]. Machine Leaming, 2006,62:107- 136.
  • 3P Domingos, M Richardson. Markov logic: A unifying framework for statistical relational learning [ A ]. In: Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and its Connections to Other Fields[C]. Banff, Canada: IMLS,2004.49 - 54.
  • 4S Kok, P Domingos. Learning the structure of Markov Logic Networks[ A]. In: Proceedings of the Twenty-Second International Conference on Machine Learning [ C ]. Bonn, Germany:ACM Press, 2005,119 : 441 - 448.
  • 5P Singla and P Domingos. Discriminative training of Markov logic networks [ A].In: Proc. AAAI-05 [ C ]. Washington: AAAI Press,2005. 868 - 873.
  • 6Nils J Nilsson. Artificial Intelligence: A New Synthesis [ M ].San Francisco: Morgan Kaufmann, 1998.257 - 259.
  • 7Po Shun Ngan, Man Leung Wong, Kwong Sak Leung, et al. Using grammar based genetic programming for data mining of medical knowledge[ A]. In: John Koza eds. Proc of the 3rd Annual Genetic Programming Conf[C].San Francisco, CA: Morgan Kaufmarm, 1998.254 - 259.
  • 8Amund Tveit. Genetic inductive logic programming [ D ].Trondheim, Norway: Dept of Computer and Information Science, Norwegian University of Science and Technology,1997.
  • 9A Tamaddoni-Nezhad, S H Muggleton. Searching the subsumption lattice by a genetic algorithm[A]. In J Cussens and A Frisctt, editors, Proceedings of the 10th International Conference on Inductive Logic Programming [ C ]. London:Springer-Verlag, 2000.243 - 252.
  • 10R C Eberhart, Shi Y. Particle swarm optimization:developments, applications and resources [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation[ C]. Piscataway,NJ: IEEE Service Center, 2001.81 - 86.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部