摘要
We discuss the existence results of the parabolic evolution equation d(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f,g are continuous. We get the theorem of existence of a mild solution, the theorem of existence and uniqueness of a mild solution and the theorem of existence and uniqueness of an S-classical (semi-classical) solution. We extend the cases when g(t)=0 or A(t)=A.
讨论了Banach空间中抛物发展方程d(x(t) +g(t,(x) ) ) /dt +A(t)x(t) =f(t ,x(t) )的存在结果 ,这里A(t)生成一个发展系统 ,函数f,g是连续的 .笔者分别给出适度解定理 ,适度解存在惟一性定理和半古典解存在惟一性定理 ,推广了前人g(t)≡ 0或A(t)≡A的结果 .