摘要
The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.
研究了分担一个值且具有一个亏量等式的亚纯函数的惟一性问题 .讨论了对任何 2个非常数亚纯函数f(z) ,g(z)只要满足 :δ(0 ,f) +δ(0 ,g) +δ(∞ ,f) +δ(∞ ,g) =3或者δ2 (0 ,f) +δ2(0 ,g) +δ2 (∞ ,f) +δ2 (∞ ,g) =3且E(1,f) =E(1,g) ,那么 ,f(z) ,g(z)必定具有 5种情形之一 .