摘要
The principal resonance of Duffing oscillator to narrow_band random parametric excitation was investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied by means of qualitative analyses. The effects of damping, detuning, bandwidth and magnitudes of deterministic and random excitations were analyzed. The theoretical analyses were verified by numerical results. Theoretical analyses and numerical simulations show that when the intensity of the random excitation increases, the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle. Under some conditions the system may have two steady state solutions.
The principal resonance of Duffing oscillator to narrow_band random parametric excitation was investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied by means of qualitative analyses. The effects of damping, detuning, bandwidth and magnitudes of deterministic and random excitations were analyzed. The theoretical analyses were verified by numerical results. Theoretical analyses and numerical simulations show that when the intensity of the random excitation increases, the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle. Under some conditions the system may have two steady state solutions.
基金
theNationalNaturalScienceFoundationofChina(10072049
19972054)theNaturalScienceFoundationofGuangdongProvince(000017)
theOpenFundoftheStateKeyLaboratoryofVibration
ShockandNoiseofShanghaiJiaotongUniversity (VSN_2 0 0 2_0 4)