期刊文献+

GENERAL SOLUTION FOR THE COUPLED EQUATIONS OF TRANSVERSELY ISOTROPIC MAGNETOELECTRO-ELASTIC SOLIDS

GENERAL SOLUTION FOR THE COUPLED EQUATIONS OF TRANSVERSELY ISOTROPIC MAGNETOELECTRO-ELASTIC SOLIDS
下载PDF
导出
摘要 The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the magnetic potential. Based on the potential theory, the coupled equations are reduced to the five uncoupled generalized Laplace equations with respect to five potential functions. Further, the elastic fields and electromagnetic fields are expressed in terms of the potential functions. These expressions construct the general solution of transversely isotropic magnetoelectroelastic media. The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the magnetic potential. Based on the potential theory, the coupled equations are reduced to the five uncoupled generalized Laplace equations with respect to five potential functions. Further, the elastic fields and electromagnetic fields are expressed in terms of the potential functions. These expressions construct the general solution of transversely isotropic magnetoelectroelastic media.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第7期774-781,共8页 应用数学和力学(英文版)
关键词 magnetoelectroelastic solids general solution potential function magnetoelectroelastic solids general solution potential function
  • 相关文献

参考文献11

  • 1Yu. N. Podil’chuk.Representation of the general solution of statics equations of the electroelasticity of a transversally isotropic piezoceramic body in terms of harmonic functions[J].International Applied Mechanics.1998(7)
  • 2Avellaneda M,Harshe G.)composite[].Journal of Intelligent Material Systems and Structures.1994
  • 3Alshits V I,Barnett D M,Darinskii A N,et al.On the existence problem for localized acoustic waves on the interface between two piezocrystals[].Wave Motion.1994
  • 4Alshits V I,Kirchner K O K,Ting T C T.Angularly inhomogeneous piezoelectric piezomagnetic magnetoelectric anisotropic media[].Philosophical Magazine Letters.1995
  • 5Chung M Y,Ting T C T.The Green function for a piezoelectric piezomagnetic magnetoelectric anisotropic elastic medium with an elliptic hole or rigid inclusion[].Philosophical Magazine Letters.1995
  • 6Kirchner H O K,Alshits V I.Elastically anisotropic angularly inhomogeneous media_Ⅱ: The Green’s function for piezoelectric, piezomagnetic and magnetoelectric media[].Philosophical Magazine.1996
  • 7LIU Jin_xi,LIU X L,Zhao Y B.Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack[].International Journal of Engineering Science.2001
  • 8Alshits V I,Darinskii A N,Lothe J.On the existence of surface waves in half_infinite anisotropic elastic media with piezoelectric and piezomagnetic properties[].Wave Motion.1992
  • 9Benvensite Y.Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases[].Physical Review B Condensed Matter and Materials Physics.1994
  • 10Huang J H,Chiu Y H,Liu H K.Magneto_electro_elastic Eshelby tensors for a piezoelectric_piezomagnetic composite reinforced by ellipsoidal inclusions[].Journal of Applied Physics.1998

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部