摘要
拓扑群O(n)对E^n的作用在拓扑学理论中是一个较为晦涩难懂的问题.文章通过定义了一个算子集合G,并证明了G与O(n)同构,由此又得出其它几个群之间的同构关系,从另一个角度阐述了拓扑群O(n)对E^n的作用,使该理论变得更加通俗直观.
To understand the effect of topological group O ( n) on En is a difficult problem. This paper difines a set of operator G ,proves that G and O(n) are isomorphism of group, and consequently illustrates that some is omorphism staying between the other groups. From a different perspective, the writer gives a new kind of explaination to the effect upon En by O ( n ) , thus helping people understand the theoretical idea.
出处
《湛江师范学院学报》
2003年第3期12-14,共3页
Journal of Zhanjiang Normal College
关键词
酉算子
伴随算子
同胚
轨道
等距同构
unitary operator
adjoint operator
homeomorphism
orbit
isometrically isomorphism