期刊文献+

有限弹塑性变形的三维组集式本构模型 被引量:6

A 3-D COMPOSITE CONSTITUTIVE MODEL FOR ANALYSIS OF FINITE ELASTO-PLASTIC DEFORMATION
下载PDF
导出
摘要 本文将文[1]中提出的三维组集式弹塑性本构模型推广应用于有限变形分析,导出了全量型和增量型本构关系在初始构形上的拉格朗日(Total Lagrange)形式和瞬时构形上的拉格朗日(Updated Lagrange)形式。文中对晶体单轴拉伸中的宏观剪切带进行了分析。预测结果与实验吻合。从而说明这种本构模型能够模拟有限变形中的几何非线性效应和晶体材料塑性变形中的宏观力学行为。 In this paper, the 3-D composite constitutive model proposed in Reference[1] is extended to analyze finite elasto-plastic deformation. Constitutive equations and explicit incremental stiffness tensors for the Updated Lagrangian solution and the Total Lagrangian solution are derived and used to predict the nonuniform and localized deformation of ductile single crystals subjected to tensile loading. The obtained results are in good agreement with the experimental data[2] and predictions of previous crystal theory[2-4]. It is verified that the 3-D composite constitutive model can well simulate macro-machanical behaviour in finite deformation.
出处 《力学学报》 EI CSCD 北大核心 1992年第2期162-170,共9页 Chinese Journal of Theoretical and Applied Mechanics
关键词 有限变形 弹塑性 本构关系 finite deformation, elasto-plastic constitutive relation, 3-D composite model, nonuniform and localized deformation
  • 相关文献

参考文献2

二级参考文献1

  • 1俞茂宏,双剪应力强度理论研究,1988年

共引文献7

同被引文献91

  • 1仲政.均值自洽理论及其在滑错多晶体中的应用[J].上海力学,1993,14(3):15-23. 被引量:1
  • 2刘志宏,梁乃刚,刘洪秋.多晶金属弹粘塑性的取向元模型[J].力学学报,1996,28(4):459-467. 被引量:2
  • 3ISHIKAWA H, SASAKI K. Deformation induced anisotropy and memorized back stress in constitutive model[ J ]. Int J Plasticity, 1998, 14 (7) : 627 -646.
  • 4COX B N, GAO Huajian, GROSS D, et al. Modern topics and challenges in dynamic fracture[J]. J Mech & Phys Solids, 2005, 53(3) : 565- 596.
  • 5ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [ C ]//Proc R Soc, Mathematical & Physical Sciences: Series A. London: Royal Soc Publishing, 1957(241 ) : 376-396.
  • 6ESHELBY J D. The elastic field outside an ellipsoidal inclusion [ C ]//Proc R Soc, Mathematical & Physical Sciences: Series A. London: Royal Soc Publishing, 1959(252) : 561-569.
  • 7ESHELBY J D. Elastic inclusions and inhomogeneities[ C ]//Progress in Solid Mechanics II, Amsterdam, 1961 : 87-140.
  • 8MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[ J]. Acta Metallurgica, 1973, 21 (5) : 571-574.
  • 9MURAT. Micromechanics of defects in solids[ M]. Hague, Netherlands: Martinus Nijhoff Publishers, 1987.
  • 10MURA T, SHODJA H M, HIROSE Y. Inclusion problems[J]. Appl Mech Rev: Part 2, 1996, 49(10) : S118-S127.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部