期刊文献+

非平稳环境下基于人耳听觉掩蔽特性的语音增强 被引量:16

Speech Enhancement based on Human Auditory Masking Properties under Non-stationary Environments
下载PDF
导出
摘要 传统的语音增强算法往往仅对平稳噪声或缓慢变化的噪声有效,且残留的音乐噪声较大。对此,本文研究了一种非平稳环境下基于听觉掩蔽效应的语音增强算法。该算法对传统谱减法的功率谱估计算法进行改进,根据最小均方误差原则和语音信号的听觉掩蔽阈值调整功率谱估计的参数,并引入了基于最小值统计特性的噪声估计算法,使估计的噪声更好地跟踪噪声的变化。实验结果表明:该算法对平稳和非平稳的噪声都得到较好的增强效果,且较好地抑制了音乐噪声。 This paper addresses the problem of single channel speech enhancement under stationary and non-stationary environments, which based on the masking properties of human auditory system. This algorithm can overcome the deficiency of the conventional speech enhancement algorithms, which were only efficient for stationary environments and have large level of musical residual noise. During the estimation of power spectrum of the speech, the parameters of the estimator can be modified by the MMSE and the masking threshold of the speech, by this way, we can find the best trade off among the amount of noise reduction, the speech distortion and the level of musical residual noise. For the best tracking the variation of the environment, the method of minimum statistics was introduced for noise power spectrum estimation. Objective and subjective evaluation of the proposed algorithm is performed with several noise types in the Noisex-92 database with different time frequency distributions. The evaluations confirm that the enhanced speech by proposed algorithm is more pleasant to a human listener for every noise conditions.
出处 《信号处理》 CSCD 2003年第4期303-307,共5页 Journal of Signal Processing
基金 国家自然科学基金(合同号:60272044)
关键词 语音通信 语音增强算法 信噪比 人耳听觉掩蔽特性 语音信号 speech enhancement auditory masking threshold non-stationary musical noise
  • 相关文献

参考文献13

  • 1杨行峻.语音信号数字处理[M].北京:电子工业出版社,1999..
  • 2..http://spib.rice.edu/spib/select_noise.html.,.
  • 3M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211.
  • 4E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228.
  • 5Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337.
  • 6Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137.
  • 7I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418.
  • 8Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121.
  • 9E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095.
  • 10R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512.

共引文献3

同被引文献140

引证文献16

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部