期刊文献+

多目标优化的演化算法 被引量:126

Evolutionary Algorithms of Multi-Objective Optimization Problems
下载PDF
导出
摘要 近年来 ,多目标优化问题求解已成为演化计算的一个重要研究方向 ,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点 .多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域 .该文在比较与分析多目标优化的演化算法发展的历史基础上 ,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果 ,并具体以多目标遗传算法为代表 ,详细介绍了基于偏好的个体排序、适应值赋值以及共享函数与小生境等技术 .此外 。 Multi-objective optimization (MOO) becomes an important research area of evolutionary computations in recent years, and the current research work focuses on the Pareto optimal-based MOO evolutionary approaches. The evolutionary MOO techniques are used to find the non-dominated set of solutions and distribute them uniformly in the Pareto front. After comparing and analyzing the developing history of evolutionary MOO techniques, this paper takes the multi-objective genetic algorithm as an example and introduces the main techniques and theoretical results for the Pareto optimal-based evolutionary approaches, mainly focusing on the preference based-individual ordering, fitness assignment, fitness sharing and niche size setting etc.. In addition, some problems that deserve further studying are also addressed.
出处 《计算机学报》 EI CSCD 北大核心 2003年第8期997-1003,共7页 Chinese Journal of Computers
关键词 多目标优化 演化算法 遗传搜索算法 PARETO最优 演化计算 Convergence of numerical methods Evolutionary algorithms Genetic algorithms Object oriented programming
  • 相关文献

参考文献29

  • 1Pareto V. Cours D' Economie Politique, volume I and II. F.Rouge, Lausanne, 1896.
  • 2Rosenberg R S. Simulation of genetic populations with biochemical properties[Ph D dissertation]. University of Michigan, Ann Harbor, Michigan, 1967.
  • 3Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence Erlbaum,1985. 93-100.
  • 4Veldhuizen D A V, Lamont G B. Multiobjective evolutionary algorithm research: A history and analysis. Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright Patterson AFB, OH, USA: Technical Report TR-98-03, 1998.
  • 5Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation. In:Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo, California, 1993. 416-423.
  • 6Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation,1994, 2(3): 221-248.
  • 7Horn J, Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. University of Illinois at Urba-na-Champaign, Urbana, Illinois, USA: Technical Report, Illi-GAL Report 93005, 1993.
  • 8Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
  • 9Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 10Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.

同被引文献1149

引证文献126

二级引证文献1122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部