期刊文献+

高分辨率遥感图像的聚类 被引量:4

THE CLUSTERING OF HIGH RESOLUTION REMOTE SENSING IMAGERY
下载PDF
导出
摘要 高分辨率遥感图像中的细小目标(如道路等)使图像的同类区域表现变得不一致,从而增加了高分辨率图像聚类的难度,本文提出了一种高分辨率遥感图像的聚类方法,其聚类过程包括如下三个步骤:第一步,在滑动窗口内使用消除次要成分法处理遥感图像,该处理过程使用一维形态学分水岭技术获得直方图中的左侧阈值和右侧阈值,再根据这两个阈值滤除图像中的次要成分;第二步,计算滑动窗口内的图像特征;第三步根据图像特征量利用BPC(Back Propagation and Competitive)网络进行图像聚类。三组试验(本文提出的聚类算法,最邻近距离聚类法,K均值聚类法)表明本文提出的图像聚类方法可以有效实现高分辨率遥感图像的聚类。 The technology of clustering high resolution imagery is difficult, due to the fact that the minor components, such as roads, make the appearance of the same category region non-uniform. This paper proposes a new approach to cluster high resolution remote sensing imagery. The clustering approach includes three steps. First, eliminate the minor components in moving windows. The process uses 1-D morphological watershed technique to find the left threshold and the right threshold in the histogram. The gray levels beyond the two thresholds which result from minor components will replaced by the principle gray level. This process can improve the statistic measures when the moving windows contain some small hetero-objects. Second, compute the image characteristics in moving windows. Third, apply BPC neural network, which is combined by a back-propagation network and a competitive network, to cluster images according to the images characteristics. Three approaches are tested using SPOT images for clustering residential areas and agricultural areas in the suburb of Beijing. The experimental results show that the new clustering approach has the highest clustering accuracy.
出处 《电子与信息学报》 EI CSCD 北大核心 2003年第8期1073-1080,共8页 Journal of Electronics & Information Technology
关键词 遥感图像 累量 BPC网络 图像聚类 Cumulant, Eliminating the minor components, BPC neural network, High reso- lution remote sensing imagery, Clustering
  • 相关文献

参考文献15

  • 1骆剑承,周成虎,杨艳.人工神经网络遥感影像分类模型及其与知识集成方法研究[J].遥感学报,2001,5(2):122-129. 被引量:88
  • 2邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,1999.12-63.
  • 3A. Banerjee, P. Burlina, F. Alajaji, Image segmentation and labeling using the Polya Urn model,IEEE Trans. on Image Processing, 1999, 8(9), 1243-1253.
  • 4G. Kuntimad, H. S. Ranganath, Perfect image segmentation using pulse coupled neural networks,IEEE Trans. on Neural Networks, 1999, 10(3), 591-598.
  • 5Y. A. Tolias, S. M. Panas, Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions, IEEE Trans. on Syst., Man, and Cybernetics, partA: Syst. and Humans, 1998, 28(3), 359-369.
  • 6Y. Dong, A. K. Milne, B. C. Forster, Segmentation and classification of vegetated areas using polarimetric SAR image data, IEEE Trans. on Geoscience and Remote Sensing, 2001, 39(2),321-329.
  • 7S. R. Seethalakshmy, P. Srivastava, J. Majumdar, Multi-modal image segmentation using a modified Hopfield neural network, Pattern Recognition, 1998, 31(6), 743-750.
  • 8J. E. Koss, F. D. Newman, T. K. Johnson, D. L. Kirch, Abdominal organ segmentation using texture transforms and a Hopfield neural network, IEEE Trans. on Medical Imaging, 1999, 18(7),640-648.
  • 9T. Nelson, K. O. Niemann, M. Wulder, Spatial statistical techniques for aggregating point objects extracted from high spatial resolution imagery, IEEE IGARSS(International Geoscience and Remote Sensing Symposium), 2001, (from the CD-ROM of 2001 IEEE IGARSS).
  • 10Q. Zhang, J. Wang, P. Gong, P. Shi, Texture analysis for urban spatial pattern study using SPOT imagery, IEEE IGARSS(International Geoscience And Remote Sensing Symposium), 2001. (fromthe CD-ROM of 2001 IEEE IGARSS).

二级参考文献8

  • 1梁怡.人工智能、空间分析与空间决策[J].地理学报,1997,52(S1):104-113. 被引量:11
  • 2王润生,图像理解,1995年
  • 3Fu Limin,Neural Networks in Computer Intelligence,1994年
  • 4胡守仁,神经网络导论,1993年
  • 5沈清,模式识别导论,1991年
  • 6梁怡,地理学报,1997年,52卷,增刊,104页
  • 7Gong P,Photogrammetric Engineering and Remote Sensing,1996年,62卷,5期,513页
  • 8Zhou J,Photogrammetric Engineering and Remote Sensing,1996年,62卷,1期,1287页

共引文献88

同被引文献50

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部