期刊文献+

基于修改核函数的RLS-SVM多用户检测算法 被引量:3

AN ALGORITHM FOR RECURSIVE LEAST SQUARES SUPPORT VECTOR MACHINE MULTIUSER DETECTION BASED ON MODIFYING KERNEL
下载PDF
导出
摘要 为了解决支持向量机算法在多用户检测中存在的模型复杂及产生的支持向量数目较多的问题,该文提出一种新的非线性多用户检测算法。该算法在第一次小样本训练时引入了遗忘因子,该因子使支持向量数减少了28%。在第一次训练后产生的支持向量的基础上,将黎曼几何结构引入到输入空间,利用黎曼几何结构将分类器中的核函数进行修改,在第二次训练中再次减少了支持向量数目。此方法在牺牲较少误比特率的基础上,简化了算法模型和降低计算复杂度。仿真实验表明,该算法抑制了多径引起的码间干扰,性能接近于最优多用户检测器。 To solve the problems of the complexity of SVM-MUD model and the number of support vectors, a new algorithm for nonlinear multiuser detection is proposed in the paper. The algorithm introduced the forgetting factor to get the support vectors at the first training. The number of support vectors is decreased by 28%. Then, the structure of the Riemannian geometry is introduced in the input space, and using the Riemannian geometric modifies the kernel function of the classifier and gets less improved support vectors at the second training. The algorithm simplifies the SVM-MUD model of the algorithm at the cost of only a little more bit error rate and decreases the computational complexity. Simulation results illustrate that the algorithm has an excellent effect on multipath interference suppression and shows that its performance can closely match that of the optimal detector.
出处 《电子与信息学报》 EI CSCD 北大核心 2003年第8期1130-1134,共5页 Journal of Electronics & Information Technology
关键词 码分多址 支持向量机 递归最小二乘 黎曼几何 核函数 移动通信 CDMA, Support vector machine, Recursive least squares, Riemannian geometry, Kernel function
  • 相关文献

参考文献8

  • 1B. Aazhang, B. Peter, Neural network for multiuser detector in CDMA communications, IEEE Trans. on Comm., 1992, COM-40(7), 1212-1222.
  • 2G. Kechriotis, E. S. Manolakos, Hopfield neural network implementation in the optimal CDMA multiuser detector, IEEE Trans on. Neural Networks, 1996, NN-7(1), 131-141.
  • 3U. Mitra, H. V. Poor, Neural network techniques for adaptive multiuser demodulation, IEEE J.on Scl., Arcas Comm., 1994, 12(9), 1460-1470.
  • 4S. Chen, A. K. Saminggan, L. Hanzo, Support vector machine multiuser receiver for DS-CDMA signals in multipath channels, IEEE Trans. on Neural Networks, 2001, 12(3), 604-611.
  • 5Xiaohong Gong, A. Kuh, Support vector machine for multiuser detection in CDMA communications, Thirty-Third Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,CA, 1999, 1.
  • 6S. Chen, B. Mulgrew, P. Grant, A clustering technique for digital communications channel equalization using radial basis function networks, IEEE Trans. on Neural Networks, 1993, NN-4(4),570-59f).
  • 7S. Amri, S. Wu, Improving support vector machine calssifiers by modifying kernel, Neural Networks, 1999, 12(7), 783-789.
  • 8I. Okamoto, S. Amari, K. Takeuchi, Asymptotic theory of sequential estimation differential geometrical approach, Annals of Statistics, 1991, 19(12), 961-981.

同被引文献25

  • 1王翔英,梁双春,钟义信.支持向量机在多用户检测中的应用[J].北京邮电大学学报,2004,27(z2):107-111. 被引量:2
  • 2张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 3Vapnik V.Statistical Learning Theory [M].Wiley-Interscience Publication,1998.
  • 4Burges C J C.A Tutorial on Support Vector Machines for Patten Recognition [J].Data Mining and Knowledge Discovery,1998,2:1-47.
  • 5S Chen.A K Samingan,L Hanzo.Support Vector Machine Multiuser Receiver for DS-CDMA Signal in Multipath Channels [J].IEEE Transaction on Neural Networks,2001,12(3):604-611.
  • 6Xiaohong Gong,Kuh A.Support Vector Machine for Multiuser Detection in CDMA Communications [C]//Signals,Systems,and Computers,1999.Conference Record of the Thirty-Third Asilomar Conference on,1999,680-684.
  • 7K W Lau,Q H Wu.OnlineTraining of Support Vector Classifier [J].Patten Recognition,2003,36:1913-1920.
  • 8U Madhow,M Honing.MMSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA [J].IEEE Trans on Communications,1998,46(8):1065-1075.
  • 9Osuna E,Freund R,Girosi G.Improved Training Algorithm for Support Vector Machines [C]//Principle J,Gile L,Morgan N,Wilson E.Neural Network for Signal Processing Ⅶ.Proceedings of the 1997 IEEE Workshop.USA:IEEE,1997.276-285.
  • 10Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization [C]//Sch(o)lkopf B,Burges C,Smola A J.Advanced in Kernel Methods Support Vector Learning.Cambridge,MA:MIT Press,1999.185-208.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部