期刊文献+

R^s空间中的Lagrange插值 被引量:1

Lagrange Interpolation in R^s
下载PDF
导出
摘要 本文给出了构造空间π~3中Lagrange插值适定结点组的添加超平面法以及构造沿无重复分量代数超曲面插值适定结点组的添加超平面法,从而弄清楚了这两种适定结点组间的几何结构。 In the paper, we give a hypersurface-superposition process and a hyperplane-su-perposition process to construct a properly posed set of nodes for Lagrange interpolation in space πns, and a properly posed set of nodes for Lagrange interpolation along a hypersurface without multiple factors, respectively, and then find out the geometric structure between the two kinds of properly posed sets of nodes.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第3期503-509,共7页 数学研究与评论(英文版)
关键词 LAGRANGE插值 适定结点组 沿超曲面插值 几何结构 lagrange interpolations properly posed set of nodes interpolation along hyper-surface.
  • 相关文献

参考文献8

  • 1LIANG Xue-zhang. Properly posed nodes for bivariate interpolation and the superposed interpolation[J]. Bulletin of Jilin University, 1979, 1; 27--32.
  • 2CHUI C E, LAI M J, Vandermonde Determinant and Lagrange Interpolation in R1[M]. in Nonlinear and Convex Analysis, B. L. Lin(ed. ), Marcel Dekker, New York, 1987, 23--36.
  • 3LIANG X Z, LU C M. Properly Posed Set of Nodes for Biwariate Lagrange Interpolation [M]. Approximation Theory IX, Vol. 1, Computational Aspect, Vanderbilt University Press, 1998, 180-- 196.
  • 4CHUNG K C, YAO T H. On lattices admitting unique Lagrange interpolation [J]. SIAM J. Numer.Anal., 1977, 14: 735--743.
  • 5DE BOOR C, RON A. The least solution for the polynomial interpolation problem [J]. Math. Z.,1992, 210: 347--378.
  • 6GASCA M, MAEZTU J I. On Lagrange and Hermite interpolation in Rt[J]. Numer. Math. , 1982,39: 1--14.
  • 7GASCA M. Multivariate Polynomial Interpolation [M]. Computation of Curves and Surfaces, Kluwer, 1990, 215--236.
  • 8LIANG Xue-zhang, FENG Ren-zhong, CUI Li-hong. On Lagrange interpolation on Sphere [J]. J.Northeastern. Math., 2000, 16(2): 243--252.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部