摘要
解刚性常微分方程已成为复杂化学反应研究的重要途径,本文介绍了化学动力学计算中的刚性问题和数值解法,并着重讨论常用的吉尔(Gear)法和半隐式龙格库塔(Semi-implicit Runge-Kutta)法及其在化学动力学中的应用。
Stiff problems and numerical solutions of ordinary differential equations used in the calculation of chemical dynamics are introduced in this paper and meanwhile, Gear method, Semi-implicit Runge-Kutta method and their applications are also discussed as a focus.
出处
《温州职业技术学院学报》
2003年第2期46-49,共4页
Journal of Wenzhou Polytechnic