期刊文献+

Hamilton-Jacobi方程的单调有限元格式 被引量:1

A MONOTONE FINITE ELEMENT SCHEME FOR HAMILTON-JACOBI EQUATIONS ON UNSTRUCTURED MESHES
原文传递
导出
摘要 1.引言 高维Hamilton-Jacobi方程(简称H-J方程)的数值方法的研究始于1984年,即Crandall和Lions[4]的工作,这是一种结构网格下的差分方法.这种方法的特点是格式简洁,易于编程,计算量小. A monotone finite element scheme is obtained by applying the finite element method to the viscosity equation of the Hamilton-Jacobi equation on unstructured meshes. Under some constraints, we show that this scheme is monotone and its numerical solution converges to the viscosity solution of the Hamilton-Jacobi equation. Numerical examples test the stability and the convergence of this scheme.
出处 《计算数学》 CSCD 北大核心 2003年第3期321-332,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(19931030)资助
关键词 HAMILTON-JACOBI方程 单调性 有限元格式 初值问题 粘性方程 非结构网格 相容性 数值Hamilton函数 Hamilton-Jacobi equation, viscosity solution, unstruc-tured mesh, finite element method
  • 相关文献

参考文献12

  • 1李祥贵,陈光南,江松.解Hamilton-Jacobi方程的无振荡局部加密方法[J].数值计算与计算机应用,2001,22(3):217-224. 被引量:1
  • 2R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equations on triangular meshes, Comm. on Pure and Appl. Math., 49 (1996), 1339-1373.
  • 3G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asympt. Anal., 4 (1991), 271-283.
  • 4P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Amsterdam, 1978.
  • 5M. G. Crandall and P. L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1984), 1-19.
  • 6C. Hu and C.-W Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), 666-690.
  • 7G. Kossioris, C. Makridakis and P. E. Souganidis, Finite volume schemes for Hamiton-Jacobi equations, Numer. Math., 83 (1999), 443-454.
  • 8F. Lafon and S. Osher, High order two dimensional non-oscillatory methods for solving Hamilton-Jacobi scalar equations, J. Comput. Phys., 123 (1996), 235-253.
  • 9P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.
  • 10J. A. Sethian, Level set methods and fast marching methods, Evolving interface, computational Geometry, fluid mechanics, computer vision, and materials science, Cambridge University Press, 1999.

二级参考文献4

  • 1Peng D,J Comput Phys,1999年,155卷,410页
  • 2Xin Z,Pure Appl Math,1999年,52卷,1587页
  • 3Osher,SIAM J Numer Anal,1991年,28卷,907页
  • 4Shu C W,J Comput Phys,1988年,77卷,439页

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部