摘要
1.引言
高维Hamilton-Jacobi方程(简称H-J方程)的数值方法的研究始于1984年,即Crandall和Lions[4]的工作,这是一种结构网格下的差分方法.这种方法的特点是格式简洁,易于编程,计算量小.
A monotone finite element scheme is obtained by applying the finite element method to the viscosity equation of the Hamilton-Jacobi equation on unstructured meshes. Under some constraints, we show that this scheme is monotone and its numerical solution converges to the viscosity solution of the Hamilton-Jacobi equation. Numerical examples test the stability and the convergence of this scheme.
出处
《计算数学》
CSCD
北大核心
2003年第3期321-332,共12页
Mathematica Numerica Sinica
基金
国家自然科学基金项目(19931030)资助