期刊文献+

基于MGA的费用分配优化模型研究 被引量:4

Research on The Optimization of The Equipment Fund's Assignment Model and Its Resolving Based on MGA
下载PDF
导出
摘要 针对费用分配实际问题,建立了优化数学模型,提出了基于遗传算法的多目标多因子求解方法,对求解过程中的选择操作方法、体内自交叉算子和增减变异算子、编码方法、适应度函数和原始种群等作了改进设计。 This paper presented an assignment model equipment fund's managenent,and its resolving method based on genetic algorithm. Then the modified 'Elitist Model',the 'self- crossover operator'and 'increase & decrease mutation opera-tor'are designed. It discusses the coding method,fitness func-tion and initial population which are fit for the problem. At the end,the method of applyiong Genetic Algorithms is also dis-cussed.
机构地区 株洲工学院
出处 《微电子学与计算机》 CSCD 北大核心 2003年第8期85-88,98,共5页 Microelectronics & Computer
基金 湖南省杰出中青年专家科技项目基金资助(02JJYB012) 教育部重点科研项目基金资助(02A056)
关键词 遗传算法 费用分配 优化 数学模型 MGA 多目标多因子求解方法 适应度函数 Modified Genetic Algorithms Assignment model Multi-goal problem Fitness function
  • 相关文献

参考文献4

二级参考文献16

  • 1[1]GoldBorg D E. Genetic algorithms in serach, optimization and machine learning M . MA: Addison Wesley, 1989.
  • 2[2]Srinivas M, Patnaikl M. Adaptive probability of crossover and mutation GAJ.IEEE Trans. On Sys, Man and Cyber, 1994, 24(4): 656?657.
  • 3[3]Davis L. Handbook of GAM. Van nostrand Reinhold. N YU, 1991.
  • 4[4]Michalewica Z. Genetic algorithms + data structure = evolution programsM.2nd edition. Berlin: Springer-verlag, 1994.
  • 5Salkin HM. Integer Programming. Addison-Wesley,1978
  • 6M Minoux. Mathematical Programming: Theory and Algorithms. John wiley sons Ltd.,1986
  • 7Syslo,M,etal. Discrete Optimization Algorithms. Englewood,cliffs,NJ:Prentice-Hall,Inc.,1983
  • 8Taha HA. Integer Programming . Macmillan,1978
  • 9GolbergD.E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-wesley,1989
  • 10Michalewicz. Genetic Algorithms + Data Structures=Evolution Programmings. 3rded. Spring-verlag,1996

共引文献32

同被引文献22

  • 1蒋伟进,孙星明.基于混合遗传算法的经费分配多目标规划研究[J].仪器仪表学报,2005,26(6):612-617. 被引量:3
  • 2曾文飞,颜玲,王志兵.经费分配中基于多目标优化的遗传规划模型[J].计算机工程与设计,2007,28(7):1620-1623. 被引量:3
  • 3王铭阳,孙优贤,何钦铭,王申康.一个基于范例推理的专家系统ICMIX[J].计算机学报,1997,20(2):105-110. 被引量:19
  • 4Hajela P. Genetic Search-An Approach to the Non-convex Optimization Problem. AIAA J. 1999, 1205-1210.
  • 5Jenkins W M. Tovards Structural Optimization via the Genetic Algorithm. Computers & Structures,1991 (41), 1321~1327.
  • 6Powell M J D.An Efficient Method for Finding the Minimum of a Several Variables without Calculating Derivatives.Computer, 1965.1(7),303-307.
  • 7Haftka K T, Gijrdal Z. Elements of Structural Optimization.Kluwer Academic Publishers, 1992.
  • 8A Michalewicz,C A Janikow. Handling Constraints in Genetic Algorithms. In: Proceedings of the International conference on Genetic Algorithms 4.
  • 9J A Wright, R Farmani. Algorithms: A fitness formulation for constrained minimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2001,725-732.
  • 10Zhou Ming, Shudong. Genetic Algorithm: Theory and Application. Defense Industry Press3,1999, 81-89.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部