期刊文献+

氢氧化镍/石墨烯复合材料的制备及其电化学性能研究

Study on the Preparation and Electrochemical Performances of Nickel Hydroxide / Graphene Composites
下载PDF
导出
摘要 以石墨粉为原料,硝酸镍为镍源,用化学沉淀-水热法制备Ni(OH)_2/石墨烯复合材料,研究不同氧化石墨(GO)与硝酸镍质量比对复合材料性能的影响,利用XRD、SEM、循环伏安(CV)、交流阻抗(EIS)和恒电流充放电技术测试其结构、表面微观形貌和电化学性质。研究结果表明:当GO∶Ni(NO_3)_2=1∶8(wt.)时,在5 m V/s扫描速度下具有高的活性物质利用率和电化学活性,0.2 C放电比容量可以达到348.5 m Ah/g,显示了优异的大电流充放电性能和循环稳定性。 Nickel hydroxide / graphene composites were prepared using nickel nitrate and graphite powder as raw materials by chemical precipitation-hydrothermal method. The influence of different graphite oxide( GO)-nickel nitrate mass ratios upon the properties of composite materials was then investigated. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry,AC impedance measurement and galvanostatic charge-discharge cycling technology to evaluate phase structure,surface microstructures and electrochemical characteristics. The results show that the composites exhibit high utilization of active material and electrochemical activity at a scan rate of 5 m V / s; the discharge specific capacity is as high as 348. 5 m Ah / g at 0.2 C discharge rate when the mass ratio of GO to Ni( NO_3)_2 is 1∶ 8. This composite displays an excellent high current charge-discharge performances and cycle stability.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第12期3681-3686,共6页 Journal of Synthetic Crystals
基金 内蒙古自然科学基金项目(2015MS0208 2014MS0523) 内蒙古自治区青年科技英才计划项目(NJYT-14-A08) 内蒙古自治区应用技术研究与开发资金项目(20140185) 包头市科技计划项目(2014Z1010-2 2015C2004-1)
关键词 化学沉淀-水热合成 Ni(OH)2/石墨烯复合材料 循环稳定性 充放电性能 chemical precipitation-hydrothermal synthesis method nickel hydroxide / graphene composite cycle stability charge-discharge property
  • 相关文献

参考文献16

二级参考文献132

  • 1聂海瑜.碳纳米管的制备[J].塑料工业,2004,32(10):11-14. 被引量:5
  • 2易双萍,张海燕,欧阳玉,王银海,庞晋山.真空热处理碳纳米管的储氢性能研究[J].物理学报,2006,55(5):2644-2650. 被引量:14
  • 3Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE. 2012, 100, 1518-1534.
  • 4Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011,4,3193-3222.
  • 5Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  • 6Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.
  • 7Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. 0.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010,3, 1238-1251.
  • 8Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chern. Soc. Rev. 2012,41,797-828.
  • 9Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.
  • 10Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113-1132.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部