期刊文献+

基于改进的FolkRank广告推荐及预测算法 被引量:3

Adapted-Folk Rank for Ads recommendation and prediction
下载PDF
导出
摘要 广告的点击率预测是指利用点击日记预测的点击率,其结果受到多方面因素影响,其中包括用户性质。有效的预测广告点击率,可以提高用户对网站展示广告的满意程度。基于Page Rank的Folk Rank算法在一个用户、资源、标签的三元组中进行迭代计算,求出推荐的标签。本文使用改进后的Folk Rank方法,通过个性化地从目标节点向其他各个结点传递权重,达到广告推荐的目的中,并实现对推荐广告的广告点击率预测。 The prediction of advertising click-through rate refers to using the click logs to forecast the click-through rates, the result is affected by various factors, including the property of user. Effective prediction of ad clicks can improve the satisfaction of users about the displayed advertising. The Folk Rank based on Page Rank is an algorithm which uses a third-order tensor tuple to calculate iteratively, then there comes the recommended tags. In this paper we propose a new algorithm called Adapted-Folk Rank to personalizedly transfer the weight from preference node to the other nodes so that it can recommend Ads. Furthermore we can predict the click-through rate of recommended Ads.
出处 《软件》 2014年第9期43-48,共6页 Software
基金 北京市自然科学基金资助 项目编号:4142042
关键词 FOLK RANK 预测 个性化推荐 点击率 Folk Rank prediction personal recommendation CTR
  • 相关文献

参考文献11

  • 1Dembczynski K,Kotlowski W,Weiss D.Predicting ads’’click-through rate with decision rules. Workshop on Targeting and Ranking in Online Advertising 2008 . 2008
  • 2AGARWAL,D,CHEN,B C,ELANGO,P.Spatio-Temporal Models for Estimating Click through Rate. Proceedings of the 18th international conference on World wide web (WWW’’09) .
  • 3Liu,C,Wang,H.Syntactic Information Retrieval. Granular Computing IEEE International Conference . 2007
  • 4Chakrabarti,D,Agarwal,D.Contextual advertising by combining relevance with click feedback. Proceedings of the 17th international conference on World Wide Web (WWW’’08) .
  • 5Dave,K,Varma,V.Learning the click-through rate for rare/new ads from similar ads. Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (SIGIR’’10) .
  • 6M Regelson,D C.Predicting Click Through Rate Using Keyword Cluster. Proceedings of the Second Workshop on Sponsored Search Auctions (EC’’ 06) .
  • 7AGARWAL,D,AGRAWAL,R,KHANNA,R.et al.Estimating rates of rare events with multiple hierarchies through scalable log-linear models. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’’10) .
  • 8颜龙杰.基于近邻评分预测的协同过滤推荐算法[J].软件,2013,34(8):63-66. 被引量:14
  • 9郭清菊,周让明,马俊涛.基于学习兴趣的个性化推荐算法研究[J].软件,2013,34(9):51-53. 被引量:14
  • 10AGARWAL,D,BRODER,A Z,CHAKRABARTI,D.et al.Estimating rates of events at multiple resolutions. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’’07) .

二级参考文献21

  • 1郭韦煜.基于用户行为分析的个性化推进系统设计[D].南京大学.2012.05.P4~5.
  • 2JiaweiHan,MichelineKamber.数据挖掘概念和技术[M].北京:机械工业出版社,2001.
  • 3Raymond Kosala, Hendrik Blockeel. Web Mining Research: A Survey. SIGKDD, 2000,1 - 15.
  • 4Rich E. User modeling via stereotypes[J]. Cognitive science, 1979, 3(4): 329-354.
  • 5Goldberg D, Nichols D, Old B M, et al Using collaborative filtering to weave an information tapestry[J] Communications of the ACM 1992, 35(12) 61-70.
  • 6Liu Hualing,Liu Huarui,Yu Han. A Way to Improve Personalized Recommendation System Efficiency[A].2011.349-353.
  • 7Yueping Wu,JianGuo Zheng. A collabor-ative ifltering recommendation algorithm b-ased on improved similarity measure meth-od[J].Progress in Informatics and Comput-ing (PIC),2010.246-249.
  • 8Liu Jianping,Wang Yong,Yan Fenghua. An Improved Collaborative Filtering Reco-mmendation Algorithm[J].Networking and Distributed Computing (ICNDC),2010.194-198.
  • 9Ye Zhang,Wei Song. A Collaborative Fi-ltering Recommendation Algorithm Based on Item Genre and Rating Similarity[J].Co-mputational Intelligence and Natural Comp-uting,2009.72-75.
  • 10Using External Data Umyarov,A,Tuzhilin,A. Improving Collaborative Filtering Recommendations Using External Data[A].2008.618-627.

共引文献21

同被引文献12

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部