期刊文献+

基于多维关联规则兴趣度的问卷调查规则提取 被引量:3

Extraction of Multidimensional Association Rules
下载PDF
导出
摘要 基于能同时处理多个属性间关联关系的多维关联规则算法,对大学生社交网络行为习惯的调查问卷进行研究分析,发现依靠支持度和置信度的关联规则算法有时会产生误导性的结果。针对关联规则存在的这一问题,给出了带有负向的关联规则兴趣度的解决办法,并发现兴趣度规则中减少关联规则计算量的性质,可极大提高了多维关联规则兴趣度算法在规则提取中的效率。实验结果表明,负向的关联规则置信度强于正向的关联规则置信度,引入兴趣度的多维关联规则算法的准确度更高。 Applying the multidimensional association rule algorithm which can deal with the incidence relation between many attributes simultaneously, in this paper, it is found that the association rule algorithm depending on support degree and confidence coefficient may cause some misleading results according to the questionnaires on the college students' safety awareness of suffering Internet. To solve the problem of association rules, a method with a negative association rules with interest degree is proposed. The amount of calculation and found that properties of association rules to reduce interest degrees of rules, which can improve the efficiency of multidimensional association rule interestingness in rules extraction algorithm. The experiment result shows that the negative association rules are stronger than positive association rules in confidence, and the multidimensional association rules algorithm with interestingness are more accurate.
出处 《软件》 2014年第9期61-65,共5页 Software
基金 湖北省高等学校省级教学研究项目(NO.JYS11005) 中南民族大学创新创业基金项目
关键词 知识工程 多维关联规则 兴趣度 负关联规则 Knowledge Engineer Multidimensional Association Rule Interest Degree Negative Association Rule
  • 相关文献

参考文献6

二级参考文献40

共引文献57

同被引文献38

  • 1何新贵.模糊集间的语义关联度及其应用[J].软件学报,1994,5(6):19-24. 被引量:9
  • 2谢运华.三峡地区导线覆冰与气象要素的关系[J].中国电力,2005,38(3):35-39. 被引量:59
  • 3于红,王秀坤,孟军.用有序FP-tree挖掘最大频繁项集[J].控制与决策,2007,22(5):520-524. 被引量:7
  • 4Agrawal R,Imielinske T,Swami A.Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data . 1993
  • 5Liu S H,Liu S J,Chen S X,et al.IOMRA-A high efficiency frequent itemset mining algorithm based on the Map Reduce com putation model. Proceedings-17th IEEE International Conferen ce on Computational Science and Engineering . 2015
  • 6Gunopulos D,Mannila H,Saluja S.Discovering all most spe cific sentence by randomized algorithms. 6th International C onference in Database Theory . 1997
  • 7Lin DI,Kedem ZM.Pincer-Search: A new algorithm for discovering the maximum frequent set. Proceedings of the 6th European Conference on Extending Database Technology . 1998
  • 8Roberto J Bayardo Jr.Efficiently mining long patterns from databases. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data . 1998
  • 9Jiawei Han,Jian Pei,Yiwen Yin et al.Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery . 2004
  • 10Han Jiawei,Kanber Micheline.Data Mining: Concepts and Techniques. . 2001

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部