期刊文献+

一种新的基于模拟退火的粒子群算法 被引量:14

A New Particle Swarm Optimization Algorithm Based on Simulated Annealing
下载PDF
导出
摘要 鉴于标准粒子群优化算法易陷入局部最优、收敛精度低,我们提出了一种改进的基于模拟退火的粒子群算法(NPSO)。将模拟退火算法的思想引入粒子群算法中,并对更新公式进行简化;提出了一种自适应随机惯性权重,实现了自适应平衡局部搜索和全局搜索的能力;提出了"优胜劣汰"的更新机制,加快了算法的收敛速度。与其它几种粒子群算法在4个基准测试函数上的实验比较,实验研究表明,NPSO算法的性能很好。 Because the standard particle swarm optimization algorithm is easy to fall into local optima and conver-gence accuracy is low, we propose an improved particle swarm optimization based on simulated annealing (NPSO). The idea of simulated annealing algorithm is involved into particle swarm optimization and update formula is simplified. To realize self-adaptive balance local search capability and global search capability, we propose a self-adaptive random inertia weight. “Survival of the fittest” update mechanism is proposed to accelerate the convergence rate. The experi-mental study shows that NPSO has a better performance in comparison with several variant PSO algorithms on four benchmark functions.
作者 赵乃刚
出处 《软件》 2015年第7期1-4,共4页 Software
基金 国家自然科学基金项目(NO.61272095)资助
关键词 粒子群优化算法 惯性权重 优胜劣汰 Particle swarm optimization Inertia weight Survival of the fittest
  • 相关文献

参考文献6

  • 1曾建潮等编著.微粒群算法[M]. 科学出版社, 2004
  • 2Zi Chao Yan,Yang Shen Luo.A Particle Swarm Optimization Algorithm Based on Simulated Annealing[J]. Advanced Materials Research . 2014 (989)
  • 3谭跃,谭冠政,邓曙光.Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems[J].Journal of Central South University,2014,21(7):2731-2742. 被引量:20
  • 4Xin Jin,Yongquan Liang,Dongping Tian,Fuzhen Zhuang.Particle swarm optimization using dimension selection methods[J]. Applied Mathematics and Computation . 2013 (10)
  • 5K. Bouleimen,H. Lecocq.A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version[J].European Journal of Operational Research.2002(2)
  • 6Ramadan Rabab M,Abdel-Kader Rehab.Particleswarm optimization for human face recognition. IEEE International Symposium on Signal Processingand Information Technology,ISSPIT 2009 . 2009

二级参考文献29

  • 1JIA Dong-li, ZHENG Guo-xin, KHAN M K. An effective memetic differential evolution algorithm based on chaotic local search [J]. Information Sciences, 2011, 181 (15): 3175-3187.
  • 2NOMAN N, IBA H. Accelerating differential evolution using an adaptive local search [J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 107-125.
  • 3MOUSA A A, ABD EL-WAHED W F, RIZK-ALLAH R M. A hybrid ant colony optimization approach based local search scheme for multiobjective design optimizations [I]. Electric Power Systems Research, 2011, 81(4): 1014-1023.
  • 4TRICOIRE F. Multi-directional local search [J]. Computers & Operations Research, 2012, 39(12): 3089-3101.
  • 5L1U Bo, WANG Ling, JIN Yi-Hui, TANG Fang, HUANG De-Xian. Improved particle swarm optimization combined with chaos [J]. Chaos, Solitons and Fractals, 2005, 25(5): 1261-1271.
  • 6CHOI C, LEE J J. Chaotic local search algorithm [J]. Artificial Life and Robotics, 1998, 2(1): 41-47.
  • 7WANG Jian-zhou, ZHU Su-ling, ZHAO Wei-gang, ZHU Wen-jin. Optimal parameter estimation and input subset for grey model based on chaotic particle swarm optimization algorithm [J]. Expert Systems with Applications, 2011, 38(7): 8151-8158.
  • 8NIKNAM T, MEYMAND H Z, MOJARRAD H D. An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants [J]. Energy, 2011, 36(1): 119-132.
  • 9COELHO L S. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach [J]. Chaos, Solitons and Fractals, 2009, 39(4): 1504-1514.
  • 10PAN Quan-ke, WANG Ling, GAO Liang. A chaotic harmony search algorithm for the flow shop scheduling problem with limited buffers [J]. Applied Soil Computing, 2011, 11 (8): 5270-5280.

共引文献20

同被引文献118

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部