期刊文献+

基于PCA-LDA和KNN-SMO的数据碎片分类识别算法 被引量:8

Identification of Data Fragment Classification Algorithm Based on PCA-LDA and KNN-SMO
下载PDF
导出
摘要 在计算机取证领域,数据碎片的取证分析已成为获取数字证据的一种重要手段。本文针对取证中数据碎片的取证问题提出了一种新的基于内容特征的数据碎片类型识别算法,该方法首先对数据碎片进行分块主成分分析PCA后,对PCA特征向量进行线性鉴别分析LDA获取组合特征向量,然后利用K最邻近KNN算法和序列最小优化SMO算法组成融合分类器,运用获取的组合特征向量对数据碎片进行分类识别。实验表明,该算法与其他相关算法相比,具有较高的识别准确率和识别速率,取得了良好的识别效果。 In the computer forensics field, the forensic analysis of data fragment has become an important means to obtain digital evidence. Aiming at the problem of data fragment forensics, this paper proposes a novel algorithm of data classification identification based on the content feature. Firstly, it makes principal component analysis (PCA) of each blocks in the data fragment; secondly, it makes linear discriminant analysis (LDA) of each PCA feature vector so as to get the combinational feature vector; finally, the author identifies the type of data fragment with the combinational fea-ture vector by using the fusion classifier of k nearest neighbor (KNN) algorithm and sequential minimal optimization algorithm (SMO). Experimental results have shown that compared with the related algorithms the proposed algorithm has better identification accuracy and identification rate which achieves better identification results.
出处 《软件》 2015年第7期21-25,共5页 Software
基金 江苏省产学研联合创新资金项目资助 项目编号:BY2014007-3
关键词 数据碎片 计算机取证 PCA-LDA KNN-SMO Data fragments Computer forensics PCA-LDA KNN-SMO
  • 相关文献

参考文献15

  • 1Tantan Xu,Ming Xu,Yizhi Ren,Jian Xu,Haiping Zhang,Ning Zheng.A File Fragment Classification Method Based on Grayscale Image[J]. Journal of Computers . 2014 (8)
  • 2Simran Fitzgerald,George Mathews,Colin Morris,Oles Zhulyn.Using NLP techniques for file fragment classification[J]. Digital Investigation . 2012
  • 3HervéAbdi,Lynne J.Williams.Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics . 2010 (4)
  • 4Simson Garfinkel,Paul Farrell,Vassil Roussev,George Dinolt.Bringing science to digital forensics with standardized forensic corpora[J]. Digital Investigation . 2009
  • 5William C. Calhoun,Drue Coles.Predicting the types of file fragments[J]. Digital Investigation . 2008
  • 6Mc Daniel M B.An algorithm for content-based automated file type recognition. . 2001
  • 7Moody S J,Erbacher R F.Sádi-statistical analysis for data type identification. Systematic Approaches to Digital Forensic Eng ineering,2008.SADFE’’08.Third International Workshop on . 2008
  • 8Axelsson S,Bajwa K A,Srikanth M V.File Fragment Analysis Using NormalizedCompression Distance. Advances in Digital Forensics IX . 2013
  • 9M. McDaniel,M. H. Heydari."Content based file type detection algorithms,". System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on . 2003
  • 10W. Li,K. Wang,S. Stolfo,B. Herzog.Fileprints: Identifying file types by n-gram analysis. 6th IEEE Information Assurance Workshop . 2005

共引文献3

同被引文献79

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部