摘要
交叉立方体连通圈网络CQCC(n)(n≥3)是一类典型的互连网络,它是3正则的.在2010年,师海忠提出如下猜想:CQCC(n)(n≥3)是Hamilton可分解的.也就是说,交叉立方体连通圈网络CQCC(n)(n≥3)可分解为边不交的一个Hamilton圈和一个完美对集的并.在这篇文章中,证明了当n=3;4;5;6时猜想成立,即交叉立方体连通圈网络CQCC(n)(n=3;4;5;6)可分解为边不交的一个Hamilton圈和一个完美对集的并。
The crossed hypercube connected cycles network CQCC (n) (n ≥ 3) is a classic interconnection network. It is 3 regular. In 2010, Shi Hai-zhong proposed a conjecture: CQCC (n) (n ≥ 3) was hamiltonian decomposition. That is to say, the crossed hypercube connected cycles network CQCC (n) (n ≥ 3) can be decomposed into union of edge-disjoint a Hamiltonian cycle and a perfect matching. In this paper, the author proves the conjecture is true when n= 3; 4; 5; 6. Namely, the crossed hypercube connected cycles network CQCC (n) (n = 3; 4; 5; 6) can be decomposed into union of edge-disjoint a Hamiltonian cycle and a perfect matching.
出处
《软件》
2015年第8期92-98,共7页
Software
关键词
互连网络
交叉立方体连通圈网络
HAMILTON圈
完美对集
Interconnection network
Crossed hypercube connected cycles network
Hamiltonian cycle
Perfect matching