期刊文献+

计及含蓄热机组快速爬坡能力的风火联合电力系统调度 被引量:4

Dispatch of Wind-thermal Power System Containing Heat Storage Units with Fast Ramping Capabilities
原文传递
导出
摘要 为提高电网中的风电利用率,一个可能途径是通过利用火电机组的蓄热能力,使之获得较快的爬坡速率去响应具有波动性和间歇性的风电出力。本文针对含风电与火电的电力系统经济调度问题,提出一个包含机组蓄热利用决策的优化模型。含蓄热的火电机组与传统火电机组不同,其爬坡能力是动态变化且具有记忆性的,因此需要针对此类机组建立新的爬坡率约束。文中将上述约束转化为等价的线性形式,并采用混合整数规划方法求解。仿真算例结果表明:含蓄热机组所提供的额外爬坡能力使系统中的风电利用率得到了显著提高。 To improve the utilization levels of wind energy in power grids,one possible way is to make use of the heat storage in thermal generators to achieve fast ramping capabilities,so that they can catch up with the fluctuating and intermittent wind power. This paper presents an optimization model considering decisions of thermal unit heat usage for the economic dispatch of wind-thermal power systems containing heat storage units. Output characteristics of such units are distinguished from conventional ones in that their ramp rates are dynamic and with memory,thus new models of ramp rate constraints need to be established. We convert the above constraints to equivalent linear forms,and then solve the problem by using mixed integer programming methods. Numerical results show that additional ramping capabilities from heat storage units lead to substantial improvements in wind power utilization.
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第S1期74-79,130-131,共6页 Journal of Engineering for Thermal Energy and Power
关键词 机组蓄热 风电利用率 爬坡率 经济调度 混合整数规划 heat storage wind utilization generation ramping economic dispatch mixed integer programming
  • 相关文献

参考文献8

二级参考文献81

  • 1刘树清,余圣方,周龙.900MW超临界直流锅炉蒸发器的数学模型与仿真研究[J].动力工程,2005,25(3):335-338. 被引量:7
  • 2姚峻,高磊,陈维和,李慧棣,杨鉴.900MW超临界机组协调控制及AGC策略的研究与应用[J].中国电力,2005,38(8):62-65. 被引量:23
  • 3周劼英,张伯明,尚金成,何南强,姚佳,范斗,程满,王丹,李予州,刘明松.河南电网实时调度系统若干功能与算法[J].电力系统自动化,2006,30(2):99-104. 被引量:25
  • 4樊泉桂.1000MW超超临界锅炉中间点温度和汽温控制[J].动力工程,2007,27(3):332-335. 被引量:41
  • 5SHEN Wei, WU Wenchuan, SUN Hongbin, et al. A wave filtering based electric load curve decomposition method for AGC[C]// Proceedings of 2010 International Conference on Power System Technology, October 24 -28, 2010, Hangzhou,.
  • 6MIRANDA M S, DUNN R W. One-hour-ahead wind speed prediction using a Bayesian methodology[C]// Proceedings of IEEE Power Engineering Society General Meeting, June 18-22, 2006, Montreal, Canada.
  • 7EI-FOULY T H M, EI-SAADANY E F, SALAMA M M A. One day ahead prediction of wind speed using annual trends [C]// Proceedings of IEEE Power Engineering Society General Meeting, June 18-22, 2006, Montreal, Canada.
  • 8SENJYU T, YONA A, URASAKI N, et al. Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator[C]// Proceedings of IEEE Power Systems Conference and Exposition, October 29- November 1, 2006, Atlanta, GA, USA: 1260-1265.
  • 9LI S. Wind power prediction using recurrent multilayer perceptron neural networks[C]// Proceedings of IEEE Power Engineering Society General Meeting, July 13-17, 2003, Toronto, Canada: 2325 -2330.
  • 10FAN S S, LIAO J J R, YOKOYAMA R R, et al. Forecasting the wind generation using a two-stage network based on meteorological information [ J ]. IEEE Trans on Energy Conversion, 2009, 24(2): 474-482.

共引文献1614

同被引文献39

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部