期刊文献+

离散对象的降阶H_∞控制器设计 被引量:1

Design of reduced-order H_∞ controllers for discrete-time plants
下载PDF
导出
摘要 基于LMI方法,考虑了离散对象的阶数不超过广义对象阶的降阶H_∞控制器存在性问题。通过3LMIS可解性条件的等价变换,给出了一个降阶控制器的上界。该上界可适用于奇异和非奇异对象两种情形,且在奇异情形不为已有结果蕴涵。证明是构造性的,当降阶控制器存在时,可以设计出这种控制器。最后给出了两个简单的算例。 The existence of reduced-order H∞ controllers with order not greater than that of generalized plants was studied, based on LMI for discrete-time plants. An upper bound of order for the controllers was obtained via equivalent 3LMIs, and was applicable to both singular and non-singular plants. Moreover, the bound was not implied by the previous one for singular plants. Finally, two examples were given to show the feasibility of the method.
作者 曾建平 林都
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第4期569-572,共4页 Control Theory & Applications
基金 山西省自然科学基金(20021045)
关键词 离散系统 离散对象 阶H∞控制器 设计 discrete-time systems H_∞ control reduced-order controllers LMI
  • 相关文献

参考文献9

  • 1郭雷,忻欣,冯纯伯.基于LMI的一种统一的降阶控制器设计方法[J].中国科学(E辑),1997,27(4):353-361. 被引量:4
  • 2忻欣,冯纯伯.非标准H^∞控制问题的降阶控制器[J].自动化学报,1996,22(6):641-647. 被引量:1
  • 3曾建平,程鹏.一类控制问题的降阶控制器设计[J].自动化学报,2002,28(2):267-271. 被引量:4
  • 4黄琳.系统与控制理论中的线性代数[M].北京:科学出版社,1990..
  • 5XIN X, GUO L, FENG C B. Redaced-order controllers for continuous and discrete-time singular H∞ control porblems based on LMI[J]. Automatica, 1996,32(11):1581-1585.
  • 6GAHINET P, APKARIAN P. A linear matrix inequality approach to H∞ control [J]. Int J of Robust and Nonlinear Control, 1994,4(1):421-448.
  • 7GAHINET P, APKARIAN P. An LMI-based parameterization of all H∞ controllers with applications [A]. Proc ofthe 32nd Conf on Decision and Control [C]. San Antonio, TX, 1993:656-661.
  • 8KIMURA H, LU Y,KAWATANI R J. On the strucure of H∞ control systems and related extensions [ J ]. IEEE Trans on Automatic Control, 1991,36(6) : 653 - 667.
  • 9STOOVOGEL A A, SABERI A, CHEN B M. Reduced-order observer based control design for H∞ -optimization [ J ] . IEEE Trans on Automatic Control, 1994,39(2) :355 - 360.

二级参考文献7

共引文献8

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部