期刊文献+

利用二粒子非最大纠缠态的概率密集编码方案 被引量:2

Probabilistic Dense Coding Using Partly Pure Entangled Two-particle State
下载PDF
导出
摘要 提出了当量子通道为非最大纠缠态时的概率密集编码方案 ,通过引入辅助粒子和进行联合么正变换 ,量子密集编码以一定概率实现 . A scheme for probabilistic dense coding by partly pure entangled two-particle state is proposed. By introducing an auxiliary particle and performing a collective unitary operation, quantum dense coding will be succeeded with certain probability.
出处 《河北师范大学学报(自然科学版)》 CAS 2003年第5期464-466,共3页 Journal of Hebei Normal University:Natural Science
基金 河北省自然科学基金资助项目 ( 10 10 94)
关键词 量子纠缠 量子信息学 量子通道 非最大纠缠态 概率密集编码 二能级粒子 联合么正变换 quantum entanglement Bell state probabilistic dense coding
  • 相关文献

参考文献8

  • 1BENNETT C H, WIESNER S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys Rev Lett, 1992,69:2 881.
  • 2AKERT A K. Quantum cryptography based on Bell's theorem [ J ]. Phys Rev Lett, 1991,67:661.
  • 3LIU X S,LONG G L,TONG D M, et al. General scheme for super dense coding between multi-parties[J]. Phya Rev,2002, (A)65:022304.
  • 4GRUDKA A, WOJCIK A. Symmetric scheme for superdense coding between multiparties[J]. Phys Rev, 2002, A66:014301.
  • 5MATTLE K,WEINFURTER H,KWAIT P G, et al. Dense coding in experimental quantum communication[J]. Phys Rev Lett,1996,76:4656.
  • 6EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys Rev, 1935,47:777.
  • 7SCHROE DINGER E. Die gegenwartige situation in quantenmechanik[J]. Naturwissenschaften, 1935,23:807.
  • 8BENNETT C H,BRASSARD G,CREPEAU C, et al .Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Lett, 1993,70:1 895.

同被引文献16

  • 1赵素倩,张平.利用三能级粒子非最大纠缠态的概率密集编码方案[J].河北师范大学学报(自然科学版),2004,28(5):476-479. 被引量:2
  • 2[1]BENNETT C H,WIESNER S.Communication via one and two-particle operators on Einstein Podolsky Rosen states[J].J.Phys.Rev.Lett,1992,69:2 881~2 844.
  • 3[2]MATTLE K,WEINFURTER H,KWAIT P G,et al.Dense coding in experimental quantum communication[J].Phys.Rev.Lett,1996,76:4 656~4 659.
  • 4[3]BOSE S.VEDRAL V,KNIGHT P L.Multiparticle generalization of entanglement swapping[J].Phys.Rev,1998,A57:822~829.
  • 5[4]LIU X S,LONG G L,TONG D M,et al.General scheme for super dense coding between multi-parties[J].Phys.Rev,2002,A65:022304(1~4).
  • 6[5]HAO J C,LI C F,GUO G C.Probabilistic dense coding and teleportation[J].Phy.Left.2001,A278:113~117.
  • 7EINSTEIN A,PODOLSKY B,ROSEN N.Can quantum-mechanical description of physical reality be considered complete? [J].Phys Rev,1935,47:777.
  • 8SCHRODINGER E.Die gegenwartige situation in quantenmechanik [J].Naturwissenschaften,1935,23:807.
  • 9BENNETT C H,BRASSARD G,CREPEAU C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].Phys Rev Lett,1993,70:1 895.
  • 10BENNETT C H,WIESNER S J.Communication via one and two-particle operators on Einstein-Podolsky-Rosen states [J].Phys Rev Lett,1992,69:2 881.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部