期刊文献+

动态图像序列中的运动目标检测 被引量:19

Detection of Moving Objects from Dynamic Image Sequence
下载PDF
导出
摘要 根据动态图像序列中背景因成像过程中各种因素而产生变化所存在的复杂性 ,提出了自适应的前景目标检测方法。首先 ,建立图像每一像素点的高斯分布模型 ,并根据序列中的当前帧及历史帧信息自适应地调整模型的参数。然后 ,结合图像帧间的差分信息以及灰度分布的先验概率等因素将图像从空间域映射至统计域。最后 ,在统计域中对前景目标进行鲁棒分割。实验的结果反映了该方法的有效性。 The background of dynamic image sequence is very complex due to the factors in imaging process. To cope with this problem, an adaptive image segmentation method for detecting the foreground objects is proposed. First, a Gaussian distribution model for image pixel is proposed. The parameters contained in the model are adaptively updated based on the information from the current and historical frames. Then, every frame is mapped from spatial domain to statistical domain incorporating the factors such as the difference image from the consecutive frames and the prior distribution of a pixel density. Finally, the foreground objects are robustly segmented in the statistical domain. Experimental results show the feasibility of the proposed methods.
出处 《计算机测量与控制》 CSCD 2003年第8期564-565,共2页 Computer Measurement &Control
基金 浙江省自然科学基金资助 (6 0 10 19)
关键词 动态图像序列 运动目标检测 图像帧 图像处理 计算机 dynamic image sequence object detection adaptive image segmentation
  • 相关文献

参考文献5

  • 1贾云得.机器视觉[M].北京:科学出版社,2002..
  • 2汪亚明.基于计算机视觉的衣服尺寸测量[J].计算机测量与控制,2002,10(3):158-159. 被引量:11
  • 3KOLLER D, WEB J, HUANG T, et al. Towards robust automatic traffic scene analysis in real time [A]. In Proceedings of the 33rd IEEE Conference on Decision and Control (Cat. No. 94CH3460-3) [C]. IEEE. 1994.
  • 4ELGAMMAL A, HARWOOD D, DAVIS L. Non- parametric model for background subtraction [A]. In IEEE ICCV '99 FRAME - RATE WORKSHOP [C]. 1999.
  • 5STAUFFER C, GRIMSON W. Adaptive background mixturemodels for real - time tracking [A]. In Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) [C]. IEEE Comput. Soc.1999.

二级参考文献4

共引文献41

同被引文献117

引证文献19

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部