期刊文献+

最大频繁集的关联规则矩阵视图

Matrix-view of Association Rules Generated by a Maximal Frequent Itemsets
下载PDF
导出
摘要 文章研究了两个基本的关联规则推导关系,在此基础上建立了最大频繁集的关联规则矩阵视图,把一个频繁集生成的所有规则全部展现在一个矩阵中,并通过研究矩阵中的各规则元素的关系,得到一个频繁集或规则矩阵的基集和核(即最小规则集),可以从大型事务数据库生成的大量关联规则中挖掘出最小规则集和有用户感兴趣的规则。 Firstly,two basic inference on association rules is put ,on which matrix-view of association rules generated by a maximal frequent itemsets is based.Using the matrix-view,all association rules generated by a maximal frequent item-sets is described in a matrix,and deducing relation between association rules and base or core of association rules is easily obtained through the matrix-view.The work is significant for finding the interesting and minimal rules.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第24期1-4,36,共5页 Computer Engineering and Applications
基金 国家自然基金资助(编号:79870009) 教育部博士点基金的资助(编号:2000000601)
关键词 关联规则 数据挖掘 二次挖掘 算法 最大频繁集 矩阵视图 事务数据库 Association rules,Data mining,The second mining,Algorithm
  • 相关文献

参考文献24

  • 1R Srikant,R Agrawal.Mining Quantitative Association Rules in Large Relational Tables[J].IEEE Transactions on Knowledge and Data Engineering, 1997.
  • 2R Agrawal,T Imielinski,A Swami.Mining association rules between sets of items in large databases[C].In:Proceedings of the ACM SIGMOD Conference on Management of data,1993:207-216.
  • 3S Brin,R Motwani,J D Ullman et al.Dynamic Itemset counting and implication rules for market basket data[C].In:ACM SIGMOD International Conference On the Management of Data, 1997.
  • 4Srikant R,Vu Q,Agrawal R.Mining Association Rules with Item Constraints[C].In:Proceedings of the Third International Conference of Knowledge Discovery & Data Mining,The AAAI Press,1997:67-73.
  • 5Srikant R,Agrawal R.Mining Generalized Association Rules[R].Research Report IBM Research Division.
  • 6Silberschatz A,Tuzhilin A.On Subjective Measures of Interestingness in Knowledge Discovery[C].In:Proceedings of the First International Conference on Knowledge Discovery & Data Mining,The AAAI Press, 1995 : 275-281.
  • 7Liu B,Hsu W,Chen S.Using General Impressions to Analyze Discovered Classification Rules[C].In:Proceedings of the Third International Conference on Knowledge Discovery & Data Mining,The AAAI Press, 1997:31-36.
  • 8Klemettinen M,Mannila H,Ronkainen Pet al.Finding Interesting Rules from Large Sets of Discovered Association Rules[C].In:the Third International Conference on Information and Knowledge Management, ACM Press, 1994:401-407.
  • 9Mohammed J Zaki.Generating Non-Redundant Association Rules.http: //www.cs .rpi .edu/-zaki, 2000.
  • 10Freitas A.On Objective Measures of. Rule Surprisingness[C].In : Proceedings of the Second European Symposium,PKDD'98,Lecture Notes in Artificial Intelligence 1510,1998 : 1-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部