摘要
文章针对网格数据计算的可视化表达,给出了网格数据图有限元自适应细分方法;进而提出了网格计算与图形及数字图像处理的信息融合提取算法,实现了数据的自适应采样细分、图像分割与边缘提取。实验结果表明,该方法在不增加太多的计算及数据量情况下,可以很好地提高特征区域数据分辨率和网格数据计算的效率。
Aim at the visualization expression of grid data computation,a grid data map finite element adaptive subdi-vision method is presented.Then an information fusion edge detection algorithm based on grid computation and digital image processing is proposed.Using this method,the numerical computing is adjusted automatically to the character area.The experiment results show that the sample resolution of the grid computation can be greatly improved without increas-ing the numerical computation very much.
出处
《计算机工程与应用》
CSCD
北大核心
2003年第24期94-96,109,共4页
Computer Engineering and Applications
基金
教育部重点实验室基金资助(编号:TKLJ0107)
陕西省教育基金资助(编号:02JK093)
关键词
网格数据
图像分割
边缘提取
自适应细分
信息融合
Grid Data,Image Segmentation,Edge Detection,Adaptive Subdivision,Information Fusion