摘要
知识获取是建立专家系统的最基本最重要的过程,但它又是研制和开发专家系统的“瓶颈”。文章提出了一种改进的规则知识机器自动获取技术,它将学习看作是在一个符号描述空间中的启发式搜索过程,能够通过归纳从专家决策的例子中确定决策规则,从而大大简化了从专家到机器的知识转换过程。
Knowledge acquisition is the most important and the basic process of expert system development ,but it is the bottleneck of expert system development.This paper presents a technologe of automatical rule knowledge acquisition,it looks the process of learning as a heuristic search process in symbolic version space.It inducts resolution rules from expert examples,and reduces the process of translating knowledge from expert to machine.
出处
《计算机工程与应用》
CSCD
北大核心
2003年第24期83-84,102,共3页
Computer Engineering and Applications
基金
广东省自然科学基金(编号:990582)
广州市科委基金(编号:2000-J-006-01)