期刊文献+

3一致反超图的完全不规则嵌入 被引量:1

Totaly Irregular Embedding of Co-hypergraphs
下载PDF
导出
摘要 众所周知,任意顶点数大于1的图至少有两个点的度数相同。但该结论对反超图不再成立。证明了任意3一致反超图都可嵌入到一个完全不规则3一致反超图中,且保持上色数不变,从而也证明了完全不规则反超图的存在性。 Every graph has at least two vertices of same degree. But it not true for cohypergraphs. This paper proves that every 3uniform cohypergraphs, H1, can be embedded into a totaly irregular 3uniform cohypergraphs, H, with (H1)=(H). This result also guarantees the existence of a totaly irregular cohypergraphs.
出处 《工程数学学报》 CSCD 北大核心 2003年第3期111-116,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(19831080 60172003) 山东省自然科学基金(Z2000A02)资助课题.
关键词 反超图 上色数 完全不规则反超图 嵌入 co-hypergraphs upper chromatic number totaly irregular co-hypergraphs embedding
  • 相关文献

参考文献4

  • 1Vitaly I, Voloshin. On the upper chromatic number of a hypergraph[J]. Australian Journal of Combin~orics,1995;11:25-45.
  • 2Diao K F, Zhao P, Zhou H S. About the upper chromatic number of a co-hypergraph[J]. Discrete Mathematics,2000;220:67- 73.
  • 3Berge C. Graphs and hypergraphs[M]. North Hplland,1973.
  • 4Gustav Burosch, Pier Vittorio Ceccherini. Isometric embeddings into cube-hypergraphs[J]. Discrete Mathematics,1995;137:77 - 85.

同被引文献24

  • 1Voloshin V, Zhou H. Pseudo-chordal mixed hypergraphs [J]. Discrete Mathematics, 1999, 202: 239-248.
  • 2Lozovanu D, Voloshin V. Integer programming models for colorings of mixed hypergraphs [J]. Computer Science Journal of Moldova, 2000, 8: 64-74.
  • 3Berge C. Graphs and Hypergraphs [M]. North Holland: Amsterdam, 1973.
  • 4Berge C. Hypergraphs: Combinatorics of Finite Sets [M]. North Holland: Amsterdam, 1989.
  • 5Jensen T, Tort B. Graph Coloring Problems [M]. New York: Wiley Interscience, 1995.
  • 6Voloshin Vitaly . The mixed hypergraphs [J]. Computer Science Journal of Moldova, 1993, 1(1): 45-52.
  • 7Voloshin Vitaly. On the upper chromatic number of a hypergraph [J]. Australasian Journal of Combinatorics, 1995, 11(1): 25-45.
  • 8Jiang Tao, Mubayi Dhruv, Tuza Zsolt, Voloshin Vitaly, West Douglas B. The chromatic spectrum of mixed hypergraphs [J]. Graphs and Combinatorics, 2002, 18(3): 309-318.
  • 9Bulgaru Elena, Voloshin Vitaly. Mixed interval hypergraphs [J]. Discrete Applied Mathematics, 1997,77(1): 29-41.
  • 10Tuza Zsolt, Voloshin Vitaly. Uncolorable mixed hypergraphs [J]. Discrete Applied Mathematics, 2000,99(1): 209-227.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部