期刊文献+

基于小波变换的电液伺服试验多变量系统神经网络控制 被引量:2

Neuron Network Control of Electro-Hydraulic Servo Testing Multi Variable System Based on Wavelet
下载PDF
导出
摘要 针对电液伺服试验系统的复杂非线性和不确定性特性提出一种基于小波变换的“主控制器”结合“参征器”的复合控制策略,并用于电液伺服试验系统的多变量控制。主控制器由一个包含PID控制规则的神经网络构成,在整个系统控制中起着主导作用;“参征器"的作用是抑制干扰,保证系统响应的快速性仿真结果证明,该方法具有良好的自学习和自适应解耦控制性能,能有效地提高系统的稳态精度,使系统具有较强鲁棒性,并具有响应速度快、超调量小等特点。 As for complicated characteristics of Electro-hydraulic Servo testing system,such as non-linearity and undefined,a composite controller algorithm of using a host controller com-bined with join-oscillator based on wavelet transform is present-ed in this paper.The host controller is made up of neuron nets of containing PID control rules,it plays a leading role in the whole system controlling;join-oscillator takes affect of restraining interference and ensures speedy of system responding.Simulation and testing show that this algorithm has good self study and adaptive decoupling control properties.It has good performance,small overshoot and can reduce the static error effectively.
出处 《微计算机信息》 2003年第9期3-4,30,共3页 Control & Automation
关键词 电液伺服试验系统 多变量系统 神经网络控制 小波变换 传递函数 wavelet transform system identification electro-hydraulic servo multi variable system PID neuron network control Compensate control
  • 相关文献

参考文献2

二级参考文献17

  • 1谭永红.神经网络逢适应PID控制及其应用[J].模式识别与人工智能,1993,6(1):81-85. 被引量:29
  • 2王耀南,童调生,蔡自兴.基于神经元网络的智能PID控制及应用[J].信息与控制,1994,23(3):185-189. 被引量:44
  • 3Chen C L,IEE Proc Control Theory Appl,1996年,143卷,2期,200页
  • 4Chan K C,Artif Intel Eng,1995年,9卷,3期,167页
  • 5Ma X L,Proc Artificial Neural Networkin Engineering Conf,1991年,625页
  • 6Yang Z J and Sagara S. System impulse response identification using a multiresolution neural network [J]. Automatica, 1997,33(7):1345-1350
  • 7Carrier J F and Stephanopoulos G. Wavelet-based modulation in control-relevant process identification [J]. AIChE Journal, 1998,44(2):341-360
  • 8van den Hof P M J and Schrama R J P. Identification and control-closed-loop issues [J]. Automatica, 1995,31(12):1751-1770
  • 9Astrom K J and Wittenmark B. Adaptive Control [M]. Reading, MA:Addison-Wesley, 1989
  • 10Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. Pattern Anal. Machine Intell., 1989,11(7):674-693

共引文献102

同被引文献11

  • 1杨文华,高梅国.基于PRI的雷达脉冲序列分选方法[J].现代雷达,2005,27(3):50-52. 被引量:27
  • 2Lai L.L., Vaseekar E., Subasinghe H., et al, Application of wavelet transform and neural networks to fault location of a teedcircuit. Time-scale and Time-Frequency Analysis and Applications, IEE Seminar on, 2000:15/1 -15/5
  • 3Jinhua Xu, Ho D.W.C., Adaptive wavelet networks for nonlinear system identification, American Control Conference, 1999,5:3472-3473
  • 4Shi Xiaolong, Li Xin, Xu Jin. Reconstruction of 3-D information under microscope. Advance in System science & Application,2003, 3:232-237
  • 5Zhang Qinhua, Benweniste A, Wavelet Network. IEEE Transactions on Neural Networks, 1992, 3(6): 889-898
  • 6Jun Zhang, Walter G.G., Miao Y., et al, Wavelet neural networks for function learning. Signal Processing, IEEE Transactions on, Volume: 43 Issue: 6, Jun 1995:1485 -1497
  • 7KENICHI NISHIGUCHI,MASAAKI KOBAYASHI.Improved Algorithm for Estimating Pulse Repetition Intervals[J].IEEE Trans on AES,2000,36(2):407-421
  • 8Delpart.N,etc.Asymptotic Wavelet and Gabor Analysis:Extraction of Instantaneous Frequencies[J].IEEE Transaction on Information Theory,1992,38(3):644-664.
  • 9Jinghuai Gao,Xiaolong Dong.Instantaneous Parameters Extraction via Wavelet Transform[J].IEEE Transactionson Published,1999,37(3):867-870
  • 10康宗明,张利,谢攀.一种基于能量和熵的自动聚焦算法[J].电子学报,2003,31(4):552-555. 被引量:46

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部