期刊文献+

支持向量机程序SVMProt预测SARS病毒蛋白质的功能 被引量:4

Prediction of the Function of SARS Proteins by Using a Support Vector Machine Program SVMProt
下载PDF
导出
摘要 对SARS冠状病毒蛋白质功能的有效识别将有利于促进SARS传染病治疗药物的开发。应用基于支持向量机原理的SVMProt程序识别SARS冠状病毒蛋白质的功能,通过对SARS冠状病毒中2个已知功能的蛋白质功能的成功预测,说明SVMProt能够有效地应用于SARS冠状病毒蛋白质及其他种类蛋白质的功能预测。对SARS冠状病毒中至今仍未知其功能的蛋白质ORF13的功能进行了预测,结果显示ORF13是一种可能与DNA结合的核蛋白并兼有病毒体内结构蛋白的功能。 Identification of the function of SARS coronavirus proteins facilitates the development of therapeutics for treatment of SARS coronavirus infection. We report the identification of the function of some SARS coronavirus proteins by using a Support Vector Machine Program SVMProt. The predicted function of two SARS coronavirus proteins with known function is in agreement with existing knowledge, which indicates the usefulness of SVMProt in functional prediction of SARS coronavirus proteins as well as other proteins. We predict the function of a SARS coronavirus protein with unknown function, ORF13, to be a nuclear protein and a structural protein with probable DNA binding property. 
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第9期148-150,共3页 Journal of Chongqing University
基金 重庆大学与新加坡国立大学国际联合科研资助项目(ARF-151-000-014-112) 重庆大学基础及应用基础研究基金资助项目(71341103) 重庆大学研究生抗"非典"科技攻关实践基金资助项目(2003-023)
关键词 非典 SARS冠状病毒蛋白质 蛋白质功能 蛋白质功能预测 支持向量机 SARS SARS coronavirus protein protein function protein function prediction support vector machine
  • 相关文献

参考文献32

  • 1DROSTEN C, GUNTHER S, PREISER W, et al. Identification of a novel coronavirus in patients with Severe Acute Respiratory Syndrome[J]. N Engl J Med,2003,348:1 967-1 976.
  • 2KSIAZEK T G, ERDMAN D, GOLDSMITH C S, et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome[J]. N Engl J Med, 2003, 348:1 953 -1 966.
  • 3MARRA M A, JONES S J M, ASTELL, C R, et al. The GEnome Sequence of the SARS - Associated Coronavirus [ J ].Science, 2003, 10. 1126/science. 1085953.
  • 4ROTA P A, OBERSTE M S, MONROE S S, et al. Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome[ J]. Science, 2003, 10. 1126/science. 1085952.
  • 5VAPNIK V. The Nature of Statistical learning Theory[M].New York: Springer, 1995.
  • 6BURGES C J C. A tutorial on Support Vector Machine for pattern recognition [ J ]. Data Min Knowl Disc, 1998, 2:121 - 167.
  • 7CAIC Z, HAN L Y, JI Z L, etal. SVM-Prot: Web -Based Support Vector Machine Software for Functional Classification of a Protein from Its Primary Sequence[ J ]. Nucleic Acids Res, 2003, 31(13) : 3 692 -3 697.
  • 8KARCHIN R, KARPLUS K, HAUSSLER D. Classifying G -pmtein coupled receptors with support vector machines[J]. Bioinformatics, 2002, 18:147-159.
  • 9KIM K I, JUNG K, PARK S H, et al. Support vector machine- based text detection in digital video [ J ]. Pattern Recognition, 2001, 34:527-529.
  • 10DRUCKER H, WU D H, VAPNIK V N. Support Vector Machines for Spam Categorization [ J ]. IEEE Transactions on Neural Networks, 1999, 10:1 048 -1 054.

同被引文献30

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部