期刊文献+

一种求解Muskat问题的有限元-有限差分算法

A FINITE ELEMENT-FINITE DIFFERENCE SCHEME FOR SOLVING MUSKAT PROBLEM
下载PDF
导出
摘要 本文采用有限元一有限差分算法,首次计算了Muskat问题的弱形式。这种算法的特点是交替求解压力和饱和度,用有限元法解压力方程,用有限差分法解饱和度方程,有限元网格与有限差分网格融为一体,网格随油水界面的推进而浮动。将本文算法的结果与解析解及传统数值模拟解进行了比较,比较的结果令人满意。 The weak form of the Muskat problem is considered in this paper. A finite-element finite difference scheme is proposed for solving the Muskat problem. Pressure andsaturation values are calculated alternatively. Pressure profile is computed by finite elementmethod and saturation distribution by finite difference method. The nodes of finite element grid are in agreement with the nodes of finite difference grid. The grids vary withmovement of the water-oil displacement front. The numerical solution is compared withthe analytical solution and the solution of conventional numerical, simulation method. Theresults of comparison are satisfactory.
作者 程时清
出处 《江汉石油学院学报》 CSCD 北大核心 1989年第2期41-48,共8页 Journal of Jianghan Petroleum Institute
关键词 Muskat问题 有限元法 有限差分法 Muskat problem weak form finite-clement-finite-difference scheme piston displacement of oil
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部